Ordered Sequence Testing Criteria for Concurrent
Programs and the Support Tool

Eisuke Itoh*, Yutaka Kawaguchi*, Zengo Furukawa** and Kazuo Ushijima*
x Dept. of Computer Science and Communication Engineering,
x* Educational Center for Information Processing,
Kyushu University.
6-10-1 hakozaki, Higashi-ku, Fukuoka, 812, JAPAN.
E-mail: itou, kawaguti, zengo, ushijima@csce.kyushu-u.ac.jp

Abstract

Testing of programs is important to increase re-
liability of the programs. Coverage is a ratio of
the number of worked test-events to all test-events,
and it is used as a metric of testing sufficiency and
reliability. The test-events are defined by a testing
criterion.

Some testing criteria are proposed for evalu-
ating testing sufficiency of sequential programs.
However, the criteria are inadequate for concur-
rent programs. New testing criteria must be intro-
duced for concurrent programs.

This paper proposes new testing criteria, Or-
dered Sequence Criteria (OSC for short) for con-
current programs. OSC are concerned with inter-
process communication and synchronization. An
OSC;, selects k-length sequences of statements re-
lated to communication or synchronization. The
sequences should be executed at least once in test-
ing. OSCy presents various levels of testing ac-
cording to values of k. The OSCqy is reliable for
a program which is correct or which includes com-
munication errors. A prototype is implemented for
coverage measuring based on OSCs.

1 Introduction

Testing has been playing an important role in
program development. Most programs are tested
to increase their reliability. Generally, a program
is tested through the following 5 steps.

Test case generation.

Test data selection.

Program testing.

Judgment of results.

5. Evaluation of testing sufficiency.

W=

We are interested in the 5th step; evaluation of
testing sufficiency. Many testers use coverage for
evaluating testing sufficiency. Coverage is a ra-
tio of worked test-events to all test-events, which
should be executed in the program testing step.
Coverage reveals us the testing sufficiency quanti-
tatively, and the test-events are defined by a test-
ing criterion.

Various testing criteria and tools based on the
criteria have been used to increase confidence for
conventional sequential programs. For examples,
four well-established testing criteria for sequen-
tial programs are statements testing (Cj), branch
testing (C1), path testing (Cw), and all-du-path
testing. The path testing criterion (Cw) is the
strongest one of all control-flow testing criteria[5].
The all-du-path criterion is the strongest one of
data-flow path selection criteria[2].

In recent years, concurrent programs are used
practically. It is obvious that only using testing
criteria proposed for sequential programs is inad-
equate for evaluating testing reliability of a con-
current program, because the testing criteria pro-
posed for sequential programs do not care the two
characteristics of concurrent program. The first
characteristic is nondeterministic execution and
the second is interprocess communication or syn-

chronization.

There are some testing criteria for concurrent
programs. Taylor et al.[10] proposed the con-
cept of structural testing of concurrent programs.
They defined the concurrency state and graph
as a model of concurrent programs, and propose
some testing criteria based on the concurrency
graph. The concurrency graph consists of nodes
and edges. A node denotes a combination of states
of each process, and an edge denotes state tran-
sition. The concurrency state and graph has two
difficulties.

1. The larger the number of states of each pro-
cess, the larger the size of the concurrency
graph.

2. The number of processes must be fixed be-
fore the concurrency state and graph is con-
structed.

Most concurrent programs generate dynamic
ally process. Testing criteria based on the con-
currency graph, therefore, are not always suitable
for testing of concurrent program.

Tai et al.[9] developed an approach to repro-
ducing the entry call arrival and rendezvous se-
quence (called Syn-sequence) of an Ada program
using an added task for controlling the execution
order. And they proposed a testing criterion based
on the Syn-sequence.

Furukawa et al.[4] proposed a testing criterion
for Ada programs, named rendezvous path testing
criterion. The rendezvous path testing criterion
requires execution of pairs entry call statement
and accept statement. But the rendezvous path
testing criterion can only apply to Ada programs
testing.

The rest of this paper is organized as follows.
In section 2, we define some terms and nota-
tions. In section 3, we consider an execution se-
quence of concurrent program based on interleav-
ing model. In section 4, we propose new testing
criteria, named ordered sequence criteria (OSC for
short), and show the test-events of OSC in an ex-
ample concurrent program. In section 5, we dis-
cuss reliability of OSC , discuss feasibility of a test-
event of OSC , and study subsumption relations
OSC with another testing criteria. In section 6,

we describe a prototype of a coverage measuring
system and experience of OSC . Finally, we con-
clude this paper in section 7.

2 Test-events and Coverage

In this section, we present some definitions of
terms and notations.

The first, we define a set of test-events with
a testing criterion. A test-event is an event that
tester ought to execute in the program testing step
and the test-events are defined by a testing crite-
rion.

Definition 1 Test-events set : T E(cri)
Let cri is a testing criterion. We express a set of
test-events defined by cri as TE(cri). O 0

For example, let consider a program and testing
criterion Cy(statements testing). The Cp requires
execution of all statements of the program at least
once. The test-events set of the program with Cy
is

TE(Cy) = {all statements in the program}.

Next, we define coverage. Coverage is a ratio of
the number of worked test-events to the number
of test-events in T'E. Definition of coverage Cov
is presented.

Definition 2 Coverage : C'ov

v
Cov = g

x 100 (%),

where W is a set of worked test-events, TE(C'ri)
is the set of test-events of a testing criterion Cri,
and | - | represents the size of the set. 0

Next, we define a concurrency statement and a
set of the concurrency statements.

Definition 3 Concurrency statement :
We call a statement related to interprocess com-
munication or synchronization as a concurrency
statement.

O a

The instances of concurrency statement are the
fork() statement which is an UNIX system call,
or entry call and accept statements of Ada ren-
dezvous, or definition and use statements of a
shared variable.

We define a set consists of concurrency state-
ments, and express this set as Sync.

Definition 4 Sync :

Sync = {all concurrency statements
in a program } .

a

3 Execution Sequences of Concurrent
Programs

In this section, we consider execution sequences
of a concurrent program on the interleaving
model[1]. The interleaving model have been used
to represent a behavior of a concurrent program
running on a single processor computer.

On the interleaving model, a concurrent pro-
gram behaves as follows. A concurrent program
consists of some processes, each of which behaves
like a sequential program. The processes commu-
nicate and/or synchronize each other. A processor
selects one statement from a process and executes
it. A statement selection is arbitrary except the
selection of concurrency statement.

We express a concurrent program P :

P:(P17P27”'PTL)7

where P; (1 < ¢ < n) is a process and n is the
number of processes in P.

We describe a process as a control flow graph.
In the control flow graph, each node represents
a statement, each edge between nodes represents
the flow of control from one node to another. We
express a process P :

-F)i:(NiaEi78i7fi)7]- §Z§n7

where N; is a set of nodes, E; is a set of edges, s;
is a start node and f; is a terminate node of the
process ;.

Proc 1 Proc2
1:| begin 4:| begin
2:| m<+—1; 5|l m<+0;
3:| end 6:| end

Figure 1. A concurrent program.

An execution of a process is described as a path
through the control flow graph of the process. We
express a path :

path =< ay,as,---ai > ,

where a;EN; , a1=s; , ap=f; and <aj,aj1>€E;
(1<j<k).

An ezecution sequence of a program is described
as a sequence of statements in the program, and
this sequence is made from shuffling of the paths of
processes. Provided that any execution sequence
must satisfy the constraints with the interprocess
communication and synchronization. We express
an execution sequence exc_seq :

exc_seq =< by, ba, -+, b >,

where b; (1<j<l) is a statements in the program,
[is the length of exec_seq.
We can define a set of all execution sequences :

Exc_Seq(P) = {exe_seq}.

For example, P is a program in Figure 1. The
P has two processes, Procl and Proc2. The path
of Procl is <1,2,3>, and the path of Proc2 is
<4,5,6>. The set of execution sequences of P
is

Ezxc_Seq(P) = {
< 123456 >,
< 124356 >, < 124536 >, < 124563 >,
< 142356 >, < 142536 >, < 142563 >,
< 145236 >, < 145263 >, < 145623 >,
< 412356 >, < 412536 >, < 412563 >,
< 415236 >, < 415263 >, < 415623 >,
< 451236 >, < 451263 >, < 451623 >,
< 456123 > 1.

If all exc_segs in a program are executed (cov-
ered), it is possible to detect all errors in the
program. However, the number of elements of
FExc_Seq is generally infinite, then all exc_segs are
never covered.

4 OSC for concurrent programs

In this section, we propose new testing crite-
ria, OSC (Ordered Sequence Criteria). An OSCy
is defined with respect to execution order of con-
currency statements.

4.1 Definition of OSC

If all execution sequences of a concurrent pro-
gram are covered in testing, it is possible to detect
all errors in the program. But the execution se-
quences are so many that it is impossible to cover
all of them. The characteristics of concurrent pro-
grams are nondeterministic execution and inter-
process communication and synchronization. We
are only interest in the characteristics as a test-
event.

In execution of a concurrent program as illus-
trated in the previous section Figure 1, the dif-
ference of the order of execution of concurrency
statements may lead to a different output. We
consider that the order of execution of concurrency
statements should be a test-event for concurrent
program testing. In the concrete, we consider that
a k-length (k>1) ordered sequence which consist
of concurrency statements should be a test-events.

Some programming languages have functions
for dynamic process generation, for example, task
type of Ada, and fork() system call of UNIX.
Most concurrent programs accordingly have dy-
namic process generation. The generated pro-
cesses (clones) have a same source but their behav-
ior may be different. If a clone process communi-
cates and/or synchronizes with another clone, as
shown in Figure 2, a same statement but in an-
other process may be executed continuously. Then
it is possible to appear a subsequence which has
a same statement continuously in an execution se-
quence. Thus, it is necessary to append some or-
dered sequences which include subsequence consist

of same statements to the TFE.

Procl Proc2

— —

FQ“@

Figure 2. Clone processes. Where a circle denotes a
node of a control flow graph. A solid arrow denotes a
control flow, and a dash arrow denotes communication
or synchronization.

Now we propose new testing criteria, named
OSC . An OSCj requires that at least once ex-
ecution of k-length ordered sequences in testing,
which a sequence consists of k concurrency state-
ments.

Definition 5 OSC; :
Suppose that P is a concurrent program and
Sync is a set of all concurrency statements in P.
Construct k-length ordered sequences with con-
currency statements. An OSCj requires execution
of the all k-length ordered sequences at least once.
O

Test-events on OSCy, (k>1) is described as the fol-
lowing expression.

TE(OSCy) = {< 51,892, - Sx > |s; € Sync,1 <i < k}.

OSCj, presents various levels of testing accord-
ing to values of k. OSCy has the following effects
according to values of k.

1. k=1

OSC; requires execution of all concurrency
statements at least once. The set TE(OSCy)
is accordingly equal to Sync. If a program
satisfies OSC; in testing, then all concurrency
statements are tested at least once. Where,
a term satisfy means that the coverage of the
testing criterion is 100% in the program test-
ing.

2. k=2

0OSCs requires execution of 2-length ordered
sequences of concurrency statements at least
once. Here we call a 2-length sequence as an
ordered pair. If a process communicates or
synchronizes with another process, the com-
munication or synchronization is represented
as an ordered pair in the execution sequence.
If a program satisfies OSC, in testing, then all
communication and synchronization between
two processes are tested at least once.

3. k=00

If a concurrent program has some loops,
the length of an execution sequence may be
infinite. And the length of the sequence
which is extracted concurrency statements
from the execution sequence may be also in-
finite. OSCy, can be defined as a testing cri-
terion which requires at least once execution
of infinite length ordered sequences. However
the OSC, is never satisfied.

4.2 An example : The Producer-

Consumer Problem

As further clarification of the ideas presented
above subsection, we present the test-events of
OSC from the Producer-Consumer Problem. The
control flow graph of the Producer-Consumer
Problem using semaphore is illustrated in the Fig-
ure 3. In the program, the Producer process prod-
ucts a data and puts it into a buffer, the Consumer
process gets the data from the buffer and con-
sumes it. The two processes repeat their works.
The Buffer is shared with the Producer and the
Consumer.

The set Sync of the program is

Sync = {2,3,5,6,7,8,10,11}.

Now, we express the TE(OSCy) (k=1,2,3) of
Producer-Consumer Problem. The test-events ac-
cording to the value of k are expressed as follows.

TE(0SCy) is

TE(0SCy) =
{<2>,<3>,<5>,<6>,
<T7T>,<8>,<10>,< 11 >},

Producer Consumer

1 Product data

write data
4 in buffer

Figure 3. The control flow graph of the Producer-
Consumer Problem. A solid arrow denotes an edge,
a dash arrow denotes a communication.

where a number in the expression corresponds to
a concurrency statement number in Figure 3. The
size of TE(OSC,) is 8 (=|Sync|).

TE(0SC,) is

TE(OSCq) =1
<2,2>,<2,3>,<2,5>,<2,6 >,
<2,7>,<2,8>,<2,10>,<2,11 >,
<3,2>,<3,3>,<3,5>,<3,6 >,
<3,7>,<3,8>,<3,10>,< 3,11 >,
<5,2>,<5,3>,<55><5,6>,
<5, 7>,<58>,<510>,<5,11 >,

<11,2>,< 11,3 >,< 11,5 >, < 11,6 >,
<11,7>,<11,8 >, < 11,10 >, < 11,11 >}.

The size of TE(0SCy) is 64 (=|Sync|?) .
TE(OSCs) is
TE(OSC3) =1

<2,2,2>,<223>, - <211,11 >,
<3,2,2>,<3,2,3>, <3,11,11 >,
<5,2,2><523>, <5,11,11 >,
<11,2,2>,<11,2,3>, -+ < 11,11,11 >} .

The size of TE(OSCy) is 512 (=|Sync|?).

After all, the size of TE(OSC) is equal to
|Sync|*.

5 Discussion

In this section, we discuss the reliability of OSC
for concurrent programs, the feasibility of test-
events on OSC , and the subsumption relations
OSC with another testing criteria.

5.1 Reliability

Howden|[5] defined a term reliable as follow. If
a program satisfies a testing criterion Cri and all
errors in the program are detected, then Cri is
reliable for the program. However, the testing cri-
terion which is reliable for any program is only
exhaustive test[11]. Any practical testing criterion
is only reliable for a program which is correct or
includes some particular errors.

To analyze the reliability of OSC for programs,
we analyze errors of concurrent programs. An
error of concurrent programs can be typed as
follows[1, 3].

1. Inner process errors.
Inner process errors like the errors of sequen-
tial programs.

2. Communication errors.
3. Synchronization errors.

OSC only interest interprocess communication
and synchronization. Therefore, OSC are not re-
liable for a program which includes inner process
errors. We consider the reliability of OSC for a
program which includes communication errors. A
communication error is further typed as follows.

(2-a) Complete communication errors
If a process always communicates error data
with another process, then this communica-
tion is a complete communication error.

(2-b) Partial communication errors
If a process often communicates error data
with another process, then this communica-
tion is a partial communication error.
0OSCs is reliable for a program which is correct
or which includes perfect communication errors.
We proof.

Procl Proc2
- —><— —
error

Figure 4. Communication error.

Procl Proc2 Proc3

Figure 5. A concurrent program which have unexe-
cutable ordered sequences. A numbered circle denotes
a concurrency statement.

Let consider communication from statement 1
to 2 shown in Figure 4. And let the communica-
tion is an complete communication error. If the
communication occurs in an execution of the pro-
gram, the execution order of statement 1 and 2
is only either < 1,2 > or < 2,1 >. The two or-
ders must be included in T'E(OSC;). Therefore,
if the program satisfies OSCs in testing, the error
must be actualized. Hence, OSCy is reliable for
a program which is correct or includes complete
communication errors.

5.2 Feasibility

In this subsection, we consider the feasibility of
the test-event of OSC .

There may be many unexecutable events in a
set TE(OSC), because we define a test-event for
0OSC;, as a k—tuple of concurrency statements.

Let consider a concurrent program illustrated in
Figure 5 and the OSC,. T E(OSC,) of the program
is
TE(0SCq) ={

<lLl1><1,2><1,3>---,<1,6>
<2,1>,<2,2><23>,---,<26>

<6,1>,<6,2><6,3>---,<6,6> }.

In the set TE(OSCy), there are many unex-
ecutable ordered sequences. The same number
pairs like < 1,1 > or < 2,2 > are never executed.
The ordered pairs like < 1,3 >, < 2,1 >, < 3,1 >,
which have reverse or skipping order through a
control flow graph of a process, are also never ex-
ecuted. The coverage of OSCq consequently never
amounts to 100% in this program.

The same number pairs and reverse or skip-
ping ordered pairs are introduced for testing of
programs which have dynamic process generation.
If a tested program has no dynamic process gen-
eration, then it is necessary to remove the same
number pairs and the reverse or skipping ordered
pairs from the test-event set.

5.3 Subsumption

In this section, we study subsumption relations
of OSC with another testing criteria. First, we
define a term subsume as follows.

Definition 6 Subsume
If a program satisfies a testing criterion A, and
the program also satisfies a testing criterion B,
then the A subsumes the B. And we express this
relation as A D B . O

The following subsumption relations obviously
stand.

Cis1 D0, 1> 1.
OSCZ'_H D) OSCZ, 1> 1.

The set TE(Cp) consists of all statements in
a program P, and) the set TE(OSC;) is equal
to Sync of P. That is, TE(OSC) is a subset of
TE(Cyh). Hence,

Co D 0OSC; .

Because OSCsy considers the execution orders
of the concurrency statements in the other pro-
cess, then the C),, (m>1) don’t subsume the OSCy,
(k>2).

Cp 7 OSCp, (m>1, k> 2).

We are able to consider a super testing crite-
rion, which requires execution of all sequences in
Exc_Seq(P) at least once. We define this super
testing criterion as C'Cy.

Definition 7 CC :
A testing criterion which requires at least once ex-
ecution along with all possible execution sequence
of a program in testing. O

A set of test-events of C'C4, is described as
TE(CCx) = Exc_Seq(P) .

On the CCy, the two following subsumption re-
lations stand.

CCx DCx N CCyx D 0OSCy .

Figure 6 shows all subsumption relations dis-
cussed in this subsection. In Figure 6, an arrow
represents a subsumption relation. That is, a test-
ing criterion on tail of an arrow subsumes the cri-
terion which on the arrow head.

CCx
/\
0SCs Coo
OVSC;), 62
O+SC2 é'1
\ Y

0S¢} «—— ()

Figure 6. Subsumption relations.

6 Support Tool

To verify the effectiveness of OSC , we construct
a prototype of measuring coverage system|6, 7).
The target of our system is C concurrent programs
which run on UNIX and which include system calls
related with semaphore operations. Since many
C concurrent programs are running on UNIX, we
expect to use our system in testing of many pro-
grams.

Concurrent processing of a C concurrent pro-
gram is implemented through making use of sys-
tem calls, which are library functions archived in

UNIX. There are some system calls for interpro-
cess communication. For instance, semaphore,
message pass, FIFO[8] and socket[12]. Since the
semaphore is the most primitive function for con-
current processing, we select it for the first tar-
get. The semaphore is provided with a system
call semop on the UNIX SYSTEM V[12].

6.1 Outline of the system

To note and record worked test-events in a sin-
gle run, we adopt a program transformation ap-
proach. Figure 7 illustrates the outline of our sys-
tem. Our system is constructed with 3 subsys-
tems.

(1) Program Transformation part

The first subsystem’s input is a source program
P ; the outputs are a transformed program P’ and
a file F'. This subsystem scans the P . If the sub-
system finds a concurrency statement, then writes
its statement number to the file F. At the same
time, this subsystem adds a monitoring process
to P and inserts many communication statements
into existing processes. We call the inserted com-
munication statements as a probe. P’ exhibits all
behavior of P.

(2) Execution part

The second subsystem makes the transformed
program P’ run. In the test execution, a single
run will not generate complete coverage for any
testing criterion except on the most trivial of pro-
grams. Thus the coverage statistics need to be re-
tained and correlated over a set of runs. In a run-
ning, every concurrency statement must request
permission from the monitor through a probe be-
fore proceeding; The monitor records the permis-
sion duly and permits their proceedings. This sub-
system repeats the transformed program running
and appending the activities to the file seq.

(3) Coverage Calculation part

The third subsystem’s inputs are file ' and seq,
where F' is output by the Program Transformation
part and seq is output by the Program Execu-
tion part; this subsystem outputs the coverage of
OSCs. The file F hold all concurrency statement
numbers in the tested program. This subsystem
constructs a set TE(OSCy), at the next, this sub-

Program transformation
part

. Source program
Input : P (C concurrent program)
|
v

P Transformed source
code

A file represent
the set of

'
Program Execution Syne
part

'

Execution
SE] | sequencesof s

(s€Sync)

P

Coverage colculation
part

|

'

Figure 7. The outline of the measuring coverage sys-
tem.

system picks up the worked test-events from the
file seq and appends these worked events to the
set W. For example, if the contents of the file seq
is

seq =< a,b,c,d,e, >,

where a,b,c,--- € Sync. Then, W (worked test-
events) is the following ordered pairs.

W={<ab><bec><cd><de>},

provided that the each of elements of W has no
same one.

Finally the third subsystem calculates coverage
according to the definition of coverage.

Table 1. Coverages of Producer-Consumer Problem.

Counts of The number of Coverage

semop | executed test-events (%)
215 7 10.9
586 16 25.0
1171 17 26.6
2341 20 31.2
3512 21 32.8
9363 21 32.8

Philosopherl Pilosopher2

[1 Piorky) | [5 Prfork2) |

[2 P(ffrkZ) | s P(ftIrkl) |

o) (o

I |
[3 v(orkd) | [7 v(orky) |
[4 v(forky) | [8 v(fork2) |

Figure 8. Flow graph of Two Dining Philosophers.

6.2 Experiments of the system

We measured coverage of OSCqy of two concur-
rent programs, Producer-Consumer Problem and
Dining philosophers with this system. The two
programs are run on SUN Sparc Station ELC.

At first, we measured coverage of OSCy of
Producer-Consumer Problem. The flow graph of
Producer-Consumer Problem is illustrated in Fig-
ure 3. Our system transformed this program to
record all concurrency activities, ran the trans-
formed program several times and calculated cov-
erage. The results of coverage is presented in Ta-
ble 1.

Next, we measured the coverage of Two Dining
Philosophers. Figure 8 shows the flow graph of
Two Dining Philosophers.

The following expression represents T'E(OSCs)
of Two Dining Philosophers, provided that a num-
ber in the expression corresponds to a number in

Table 2. Coverage of Two Dinig Philosopher.

Counts of The number of Coverage
semop | executed test-events (%)
82 15 23.4
166 24 37.5
622 28 43.8
1012 28 43.8
1468 29 45.3
Figure 8.
TE(0SCy) ={
<Ll> <1,2>, ---<1,7>,<1,8>,
<2,1>,<2,2>,--- < 2,8 >,
<81> <82>, - <8,8>}.

Table 2 shows the coverage of OSCy of Two Din-
ing Philosophers.

Table 1 and Table2 shows us that there are
bound of coverage. The reasons of the bound is
the following two things:

1. As discussed in sectionb.2, there are unexe-
cutable test-events in T E(OSCy).
It is necessary to remove the unexecutable
test-events from TFE.

2. In TE(OSCy), there are some test-events
which executable but yet covered.
It is necessary to make an test data set to be
cover the event or necessary to force a execu-
tion order.

The program transformation approach must ap-
pear an overhead incurred arising from the inser-
tion of the probes and the monitoring process. We
measured the execution time overhead of Producer
Consumer Problem and Table 3 describes the time
overhead. The time is measured with time com-
mand of UNIX.

Table 3 shows that the execution time of P’ has
very large overhead than that of original. The
reason of the large overhead is structure of moni-
tor. In the system, if a concurrency statement in
P’ is about to execute, then the monitor process

Table 3. Execution time table of original Producer-
Consumer Problem and the translated program.

Produced Data | P (sec) | P’ (sec) | Count of
(byte) semop
40 0.07 7.6 322
365 0.3 57.6 2922
1208 0.7 208.6 9600

T : less than 0.1 sec

write the event in the file seq. The execution time
is consequently increased by the file inputs. It is
necessary to tune up recording part of the added
monitoring process.

6.3 An strategy for effective use of OSC

Described in above section, the coverage of OSC
may not be 100%. It is necessary to devise the ef-
fective use of the coverage for evaluation of testing
sufficiency. To use the coverage of OSC efficiency,
we recommend a strategy, in which there is the
three steps. We show the steps.

First step:

Execute testing a concurrent program with a
set of test data and measure the coverage of OSC.
If the coverage is not 100%, then the tester list up
the yet covered test-events.

Second step:

Decide every yet covered test-event whether it is
an executable event or not. If a test-event is not
executable, then remove it from the test-events
set, else remain it.

Third step:

To cover the remainder events, run the program
and measure coverage again. But to cover the re-
mainder events, it needs two works, test data se-
lection and forcing an execution ordered sequence.

Let consider the test data selection. Test data
commonly are not able to select automatically,
then the tester has to select test data by oneself.

Next, let consider the forcing execution. Con-

10

trol of execution is one of the difficulties encoun-
tered in the testing of concurrent programs. It is
nondeterministic which execution sequence is cov-
ered in an running and consequently it is nondeter-
ministic which ordered sequence is covered. The
processor nonpredictably choose one of the state-
ment.

For forcing an ordered sequence in a running of
a concurrent program, we should avail the added
monitor process. Tai et. al.[9] have developed
an approach to reproducing the entry call arrival
and rendezvous sequence of an Ada program using
an added task to control the execution sequence.
Tai’s approach can avail to our system.

It is necessary for forcing an ordered sequence
to improve our system. The improvement is as
follows. The system transforms the tested pro-
gram P into P’, such that P’ allows as input not
only test data but also ordered sequences of con-
currency statements which tester want to cover.
Of course, the P’ may has moniter process and
probes. The added monitor force the execution
order of concurrency statements along with given
ordered sequence. Every concurrency statements
must request permission from monitor through
probe before proceeding; the monitor permits the
statement’s proceeding which is next statement of
given ordered sequence.

7 Conclusion

In this paper, we proposed new testing criteria
OSC for evaluation of testing reliability. The OSC
is simple and portable testing criteria for using in
testing. The OSC is fundamentally based on the
source code of a concurrent program, therefore,
the number of test-events must be finite. We also
discussed the reliability of the OSC for a concur-
rent program. The OSC, is reliable for a program
which is correct or which includes complete com-
munication errors. Furthermore we discussed the
subsumption relation OSC with another testing
criteria. We also implemented a measuring cover-
age system and measured the coverage of OSCy on
two concurrent programs with this system. Since
0OSC, may request execution with unexecutable
ordered sequences, the coverage of OSCy may not

be 100%. We consider a strategy for effective use
the coverage of OSC.

There are some future problems:

e Improve the coverage evaluate system.

— Apply another system calls.
Our system correspondence
semaphore (semop system call) on
UNIX SYSTEM V. There are many
interprocess communication system
call on UNIX. It is necessary to deal
with these functions. Now, we are
improving our system to record an
function socket, which is a interprocess
communication interface on BSD UNIX.

only

— Expand length of ordered sequence.
Our system only measures coverage of
0OSC,. It is necessary to improve the sys-
tem to measure coverage of OSCy (k >
3).

e Expansion of the OSC .

— Remove unexecutable sequences.
As discussed in subsection5.2, the OSCy,
may request executions of unexecutable
ordered sequences. It is necessary to
remove the unexecutable ordered se-
quences from the test-events set.

— Forcing an ordered sequence.
The system must allow the ordered se-
quences as input for forcing ordered se-
quences of concurrency statements.

e Distinction all dynamically generated pro-
cesses in program.
Our system is constructed on UNIX. On
UNIX, any running process has an unique
process numbers. For utilizing the process
number, it is possible to more definite test.

Acknowledgment

We thank Prof. J. Cheng, Prof. H.
Taniguchi for encouragement and valuable com-
ments. We also thank T.Katayama, K.Simozono
and H.Kashima for discussion about testing and
system implementation.

11

References

[1] Ben-Ari, M. : Principles of Concurrent Pro-
gramming, Prentice Hall International, Inc.
1982.

[2] Clarke, L. A., Podgurski, A., Richardson, D.
J. and Zeil, S. J. : A Formal Evaluation of
Data Flow Path Selection Criteria, IEEE Trans.
Softw. Eng., Vol.15, No.11, pp.1318-1332, 1989.

[3] Furukawa, Z. and Ushijima, K. : A Testing
Method for Concurrent Programming, Proc. of
6th JSSST, pp.185-188, 1989 (in Japanese).

[4] Furukawa, Z. and Ushijima, K. : Reliability of
the Rendezvous Path Testing Criterion for Ada
Concurrent Programs, Trans. IEICE, Vol.J75-
D-I, No.5, pp.288-297, 1992 (in Japanese).

[5] Howden, W. E. : Reliability of the Path Anal-
ysis Testing Strategy, IEEE Trans. Softw. Eng.,
Vol.SE-3, No.4, pp.226-278, 1976.

[6] Ttoh, E., Kawaguchi, Y., Furukawa, Z. and
Ushijima, K. : Testing Criteria for Interprocess
Communication in C Concurrent Programs.
IPSJ SIG Notes, 93-SE-90, pp.9-16, 1993. (in
Japanese)

[7] Kawaguchi, Y., Itoh, E., Furukawa, Z. and
Ushijima, K. : On constructing testing relia-
bility evaluation system with ordered sequence
testing criteria, IPSJ SIG Notes, 96-SE-14,
pp.107-114, 1994 (in Japanese).

[8] Rockkind, M. j. : Advanced UNIX Program-
ming, Prentice Hall International, Inc. 1985.

[9] Tai, K. C., Carver, R. H. and Obaid, E. E. :
Debugging Concurrent Ada Programs by Deter-
manistic Ezecution, IEEE Trans. Softw. Eng.,
Vol.17, No.1, pp.45-63, 1992.

[10] Taylor, R. N., Levine, D. L. and Kelly, C. D.

Structural Testing of Concurrent Programs,

IEEE Trans. Softw. Eng., Vol 18, No.3, pp.206-
215, 1992.

[11] Weyuker, E. J. : The Complezity of Data
Flow Criteria for Test Data Selection, Infor-

mation Processing Letters, Vol.19, pp.103-109,
1984.

[12] Leffler, S. J., Mckusuck, M. K., Karels, M. J.
and Quarterman, J. S. : The Design and Imple-
mentation of the 4.3BSD UNIX Operating Sys-
tem, Addison-Wesley Publishing Co. Inc. 1989.

12

