
A prototype of a concurrent behavior monitoring tool

for testing of concurrent programs

Eisuke ITOH
Dept. of Computer Science

and Communication
Engineering,

Kyushu University.
Hakozaki 6-10-1, Higashi-ku,

Fukuoka, 812-81, Japan.

itou@csce.kyushu-u.ac.jp

Zengo FURUKAWA
Educational Center for
Information Processing,

Kyushu University.
Hakozaki 6-10-1, Higashi-ku,

Fukuoka, 812-81, Japan.

zengo@ec.kyushu-u.ac.jp

Kazuo USHIJIMA
Dept. of Computer Science

and Communication
Engineering,

Kyushu University.
Hakozaki 6-10-1, Higashi-ku,

Fukuoka, 812-81, Japan.

ushijima@csce.kyushu-u.ac.jp

Abstract

Testing of concurrent programs is much more dif-
ficult than that of sequential programs. A concurrent
program behaves nondeterministically, that is, the pro-
gram may produce different results with the same input
data according to execution timings of the program. In
testing of concurrent programs, test data must specify
not only input data but also sequences of statements.
Ordered Sequence Testing Criterion for length k

(OSCk), which was proposed by the authors, requires
execution of all sequences of length k of concurrency
statements which cause concurrent actions in a concur-
rent program. A monitoring tool has been developed for
applying the testing criterion OSCk to the testing of C
concurrent programs on UNIX system. The tool mea-
sures coverage with regard to k-tuples of concurrency
statements (OSCk) in source codes of a C concurrent
program using a probe insertion method.
The analysis of the tool’s output for a practical C

concurrent program shows not only applicability of the
tool for testing of concurrent program but also the ne-
cessity of a supporting tool for forcing execution of con-
currency statements.

1 Introduction

Testing of concurrent programs is more difficult than
that of sequential programs. In execution of a concur-
rent program, a process in the program communicates
with, synchronizes and waits for nondeterministically
other processes through execution of concurrency state-
ments related to interprocess communication, synchro-

nization and waiting. Therefore, execution sequences
with the same input data may be different due to exe-
cution timing of concurrency statements. In testing of
concurrent programs, we have to specify not only input
data but also sequences of statements for execution as
testing conditions of the concurrent programs.
A testing criterion specifies conditions for termina-

tion of testing. We proposed testing criteria OSC (Or-
dered Sequence Testing Criteria) for concurrent pro-
grams in [1, 2], which are based on sequences of con-
currency statements. An OSCk requires execution of all
sequences of length k of the statements at least once
(k is a natural number.)
We have developed a prototype of a concurrent be-

havior monitoring tool on UNIX for testing based on
OSC . The tool monitors execution of a concurrent pro-
gram and measures coverage with regard to pairs of
concurrency statements in source codes of a C concur-
rent program. Many concurrent programs are devel-
oped with C language on UNIX system, and then we
developed the prototype for C concurrent programs.
In this paper, we describe the prototype tool and the

result of an experiment. We analyze the experiment
results and discuss the effectiveness of OSC. Section
2 briefly explains testing criteria, OSC. The OSCk are
based on source code, and it is only interested in execu-
tion order of interprocess communication, synchroniza-
tion and waiting. Section 3 describes our monitoring
tool. This section shows how to transform a source
code, how to work the monitor and record concurrent
behavior, and how to calculate coverage. Section 4
shows an experiment of our prototype tool. We ap-
plied the tool to the phone program [3] and recorded
the behavior. Section 5 analyzes the experiment re-

sults. Section 6 discusses our tool for practical use.
Section 7 concludes this paper.

2 OSC

The concurrent programs that we are interested in
testing include those written in languages such as Ada,
CSP, and we are especially interested in C concur-
rent programs on UNIX system. And we consider the
behavior of concurrent programs on the interleaving
model[4]. The interleaving model has been used to rep-
resent the behavior of concurrent programs running on
a single processor computer.
A concurrent program consists of some computation

units (processes), each of which behaves like a sequen-
tial program. The processes communicate, synchro-
nize, and/or wait with each other. The processor se-
lects a process arbitrarily and executes one of state-
ments in the process. However, the selection is con-
strained in case of synchronization, communication,
and waiting between concurrency statements. These
features may cause nondeterministic behavior by a
computer system.
A concurrent program can be supplied with the same

input data set on two different executions, yet exhibit
different behavior. This behavior represents the effects
of the computer system making different choices in re-
sponse to conditions external to the program, such as
the load on the machine on which the program runs.
Testing criteria designed for application to sequen-

tial programs can be applied to concurrent programs.
However, they fail to directly address the testing prob-
lems peculiar to concurrent programs. The nondeter-
ministic behavior presents one key difficulty.
For example, let’s consider a concurrent program P

which is shown in Figure 1. P consists of 3 processes:
P1, P2, and P3. P1 and P2 send a string to P3 once. P3
receives both strings and sets both strings in the same
data cell “m”. The execution result is unpredictable
which string is set.
On the program P , the execution result value of

“m” is in accordance with the execution order of the
communication statements. The possible execution or-
ders of communication statement are as follows:

< 1, 3, 2, 3 >; −→ m = “bb′′ ,

< 2, 3, 1, 3 >; −→ m = “aa′′ .

If P is executed once, then the all-paths testing crite-
rion (C∞) [5] is covered. But it is not sufficient. P
must be executed in a different execution sequence.
The nondeterministic execution of concurrent pro-

gram can be modeled as ordered sequences of state-

P1 P2
1: Send_data(aa); 2: Send_data(bb);

P3
repeat

3: m:= Received_data;
until nodata;

P1

P2

P3
write

send
"bb"

send
"aa"

"aa"
 or
"bb"

m

Figure 1. A concurrent program.

ments in the program. In testing of concurrent pro-
grams, we have to specify not only input data but
also sequences of statements for execution as testing
conditions of concurrent programs. However, it is not
practical to execute all possible execution orders of the
statements in testing.
The characteristics of concurrent programs are inter-

process communication, synchronization and waiting.
We call the statement related with interprocess com-
munication, synchronization and waiting as “a concur-
rency statement.” A nondeterministic execution of a
concurrent program can be abstracted as an execution
order of concurrency statements.
Therefore, we proposed testing criteria, named OSC

[1, 2]. The criteria OSC are concerned with the ex-
ecution order of concurrency statements. The formal
definition of OSC is as follows.

OSCk :
Suppose that there is a concurrent program
and Sync is a set of all concurrency state-
ments in the source code. Construct or-
dered sequences of length k of the concurrency
statements, where k is a natural number. An
OSCk requires execution of all the ordered se-
quences of length k at least once.

A set of test-events of OSCk (k ≥ 1) is described as
the following set,

TE(OSCk) = {< s1, s2, · · · sk > |si ∈ Sync, 1 ≤ i ≤ k} ,

where the TE(Cri) is a set of test-events of a testing
criterion Cri.
If k = 2, we call the OSC2 the ordered pair testing

criterion. A set of test-events of OSC2 is described as
the following set.

TE(OSC2) = {< si, sj > |si, sj ∈ Sync}.

2

If all test-events of OSC2 are executed, then all com-
munications between any two processes are tested at
least once.

3 A prototype of a monitoring tool

We have developed a prototype of a monitoring tool
which measures coverage of pairs of concurrency state-
ments in C concurrent programs. This coverage is a
metric for evaluating testing sufficiency based on the
testing criterion OSC2.
C language does not offer interprocess communi-

cation features. C concurrent programs cooperate
with an operating system for realizing the interpro-
cess communication. The monitoring tool can deal
with C concurrent programs on UNIX operating sys-
tem. There are some kinds of mechanisms for inter-
process communication such as semaphore, FIFO, pipe
and socket[6, 7]. These mechanisms are implemented
as system calls in UNIX. The monitoring tool is able
to deal with the system calls for semaphore, pipe and
socket mechanisms currently.
In this section, we firstly explain system calls for the

socket mechanism because monitoring behavior is easy
to understand. Then, we desicribe the outline of the
monitoring tool.

3.1 Socket

The socket is developed for interprocess communica-
tion in 4.3BSD UNIX at first[6]. The socket is available
on some other operating systems at present[7]. Our
tool makes a log of execution of the socket system calls.
There are some features in the socket. This subsection
briefly describes the socket of UNIX.
The socket supports two data types of communica-

tion: stream type and datagram type. The stream type
socket guarantees message arrival. The datagram type
socket does not guarantee message arrival. In commu-
nication with the stream type socket, messages are sent
with system calls write() or send(), and messages are
received with system calls read() or recv(). In com-
munication with the datagram type socket, messages
are sent with the system call sendto(), and messages
are received with the system call recvfrom().
The system calls receive messages in two modes :

blocking and nonblocking. In the blocking mode, if
there is no readable message, then the process which is
to receive the message waits until the message arrival.
In the nonblocking mode, the process does not wait but
executes another statement immediately.
A socket can receive messages from multiple sockets

and other devices. The system call select() can be

used for multiple message receiving. In the system call
select(), a process which receives the message can
wait a fixed time for message arrival.
After that, the statements which include the

system calls, write(), send(), read(), recv(),
sendto(), recvfrom(), and select() are the concur-
rency statement of UNIX C concurrent program, where
the system calls must use a socket. (The system calls
write() and read() can use for any device.)

3.2 The outline of the monitoring tool

We describe the outline of the prototype of our mon-
itoring tool. We take a program transformation ap-
proach to monitor concurrent behavior [8, 9]. Figure
2 shows the outline of our monitoring tool. The tool
consists of three programs: the source code transforma-
tion program, the monitor program, and the coverage
calculation program.

source code transformation
program

source
program

transformed
program

input

monitor program
executable

transformed program

complile

RUN

communication

RUN

result

sequence of
concurrency
statements

monitor
process

(1) Transformation

(2) Monitoring

coverage calculation
program

coverage

concurrency
statements

output

Monitoring Tool

F

seq

processes

(3) Coverage Calculation

Figure 2. An outline of the monitoring tool.

3

(1) Source Code Transformation Program

Figure 3 shows a source code transformation. The
input of the transformation program is a C source code
of a concurrent program, and the output is a trans-
formed C source code and a file F . The file F in-
cludes a table of all concurrency statements. A con-
currency statement (a system call for communication)
is identified by two items: file name which includes the
statement and line number where the statement ap-
pears. Then every concurrency statement can be given
a unique identifier. The transformation program as-
sumes that one line has only one statement in the input
program. Then, the input program must be organized
beforehand.
The transformed sources are constructed by insert-

ing probes before and after every communication state-
ment. Figure 3 shows how to insert probes before and
after a communication statement. In Figure 3, the
function probe b() is the inserted probe before a com-
munication statement, and the function probe a() is
the after probe. A probe is a communication function
between existing processes and the monitor process.

Transform

Source code Transformed source

sendto();

probe_b();

probe_a();

sendto();

Figure 3. Program transformation. (Probe insertion.)

(2) Monitor Program

The monitor program controls communications be-
tween processes in the tested program, and records
communications in a file seq. The program proceeds
according to the following steps. The first step is to
compile the transformed sources. The next is to run
the monitor program, and then the monitor process
will be generated. The last is to run the complied pro-
gram, and then some target processes will be gener-
ated. We call the processes which are generated from
the transformed program (tested program) as the tar-
get processes. The monitor program must be running
before execution of target program, otherwise, execu-
tion behaviors are not recorded.
Figure 4 shows how the monitor process repeats four

phases : request waiting phase, recording phase, ac-
ceptance phase, and confirmation phase. They are ex-
plained as follows.

A processmonitor process

acceptance

confirmation

queue

commnicate

request
waiting

recording

A process

commnicate

wait acceptance

request entry

notice

probe_a

probe_bprobe_b

request entry

wait acceptance

probe_a
notice

Figure 4. Monitor process.

1. Request waiting phase.
The monitor process waits for a request from a
target process. When a target process executes
a communication, then the inserted before probe
probe b() sends a request to the monitor process.
The request is queued.

2. Recording phase.
The monitor process takes a request from the
queue, and records the request in the file seq.

3. Acceptance phase.
The monitor process sends an acceptance message
to the target process. The target process continues
execution. The target process can communicate
with other processes.

4. Confirmation phase.
After the communication with the target process,
the after probe probe a() sends a notification
message of communication end. The monitor pro-
cess waits for the notification. If the monitor pro-
cess receives the notification, then it returns to the
first phase.

The monitor process suspends communications of
other target processes. If the mode of the receiving
system call is the blocking mode, then all processes
may get into deadlock. A target process sends a re-
quest for receiving a message to the monitor process.
The monitor process accepts the request and waits for
the notification of the receiving end. If the mode of
the receiving system call is the blocking mode, then
the target process waits for message arrival from other
processes. However, if the monitor process prevents the
other process’s communication, then no messages will
arrive at the waiting system call. Then all processes
get into deadlock.
To avoid deadlock, the monitor process examines the

state of the target process in the 4th phase[7]. When
the target process gets into the message waiting state,
the monitor process can know it. Then the monitor
process confirms that the target process terminates the

4

receiving system call, and the monitor process returns
to the request waiting phase.
The monitor process can also monitor communica-

tion with pipe. The socket system is a revision of the
pipe system. Then, the monitor process is able to mon-
itor pipe communications in the same way as in socket.

(3) Coverage calculation program.

The present version of the coverage calculation pro-
gram calculates coverage of OSC2 using two files, F
and seq. The file F produced by the transformation
program represents a table of all concurrency state-
ments (communication system calls), and the file seq
produced by the monitor process represents a sequence
of the concurrency statements.
At first, the coverage calculation program constructs

a set TE(OSC2) using the file F . Next, it picks up the
executed test-events (ordered pairs) from the file seq,
and appends these worked pairs to the set W . For
example, if the content of the file seq is

seq =< a, b, c, d, e >,

where a, b, c, d, e ∈ Sync, then W (worked pairs) will
be

W = {< a, b >, < b, c >, < c, d >, < d, e >},

provided that W has no identical pairs.
In the case of OSCk, the executed k-length sequence

can be picked from the file seq in the same way as in
the case of OSC2. But, we have not implemented OSCk

coverage calculation function yet.
Finally, this program calculates coverage according

to the definition of coverage Cov,

Cov =
|W |

|TE(Cri)| × 100 (%),

where W is a set of worked test-events, TE(Cri) is a
set of test-events of a testing criterion Cri, and | · |
represents the size of the set.

4 An experiment

We applied the monitoring tool to the phone
program[3]. The phone program is a character based
conversation program on terminals. For people with In-
ternet access, the source of the phone program is avail-
able in phone.tar through ftp from some ftp site. We
developed our monitoring tool and executed the phone
on a Sun3/80 workstation with SunOS.4.1.1. In this
section, we report the experiment and the results.

4.1 phone program

The phone program consists of three subprograms
: client(client), master daemon (masterd), and con-
versation daemon (convd). One master daemon must
stay on each UNIX machine. A client process is created
when a user types a phone command. A conversation
daemon process is created for every conversation by the
master daemon.
A conversation on phone is constructed in order of

the following steps. First, a user types a command
“phone username”, then a client process is created.
The client process sends a request message to the mas-
ter daemon process. If the destination user exists on
the same local machine, then the master daemon on
the machine calls the destination user, or else the local
master daemon calls a remote master daemon process
which stays on the same machine which is used by the
destination user. Then the destination user is called
by the master daemon process which stays at the des-
tination user using the machine. When the destination
user types “phone”, then a client process is created
for the destination user. The destination user’s client
sends a message to the caller’s master daemon. When
the first master daemon receives the message, it cre-
ates a conversation daemon, then both client daemons
are connected with the conversation daemon. Finally,
a conversation starts. Figure 5 shows the outline of a
conversation with phone program.

masterd

clientclient convd

Figure 5. Phone program.

4.2 Results

In the phone program source, there are 44 communi-
cation statements. The number of test-events of OSC2

is 1,936 (= 442) , consequently. Table 1 shows the com-
munication statements in each program. And, Figure
6 shows the contents of the file F , produced by the
transformation program.
We executed the phone program 37 times. The total

count of communication statement execution is 44,017.
Tables 2 and 3 describe the results of the experiment.
Table 2 describes the executed communication state-

ments. Table 2 shows that there are 31 executed com-

5

Table 1. Communication statements in each source of phone program.
read() write() recvfrom() sendto() select() Total

client 3 6 1 2 2 14
masterd 0 0 1 17 1 19
convd 2 8 0 0 1 11
Total 5 14 2 19 4 44

Table 2. Executed communication statements.

client
read() write() recvfrom() sendto() select() Total

statements 3 6 1 2 2 14
executed statements 3 6 1 1 2 13

non-executed statements 0 0 0 1 0 1
masterd

read() write() recvfrom() sendto() select() Total
statements 0 0 1 17 1 19

executed statements 0 0 1 7 1 9
non-executed statements 0 0 0 10 0 10

convd
read() write() recvfrom() sendto() select() Total

statements 2 8 0 0 1 11
executed statements 2 6 0 0 1 9

non-executed statements 0 2 0 0 0 2
Total of non-executed statements 13

munication statements and then 13 non-executed com-
munication statements. The OSC1 requires execution
of all concurrency statements (communication state-
ments) at least once. (A sequence of length 1 of con-
currency statement means a statement.) TE(OSC1) is
the set of all concurrency(communication) statements.
Then, the coverage of OSC1 is ,

31
44

× 100 = 70%.

Table 3 describes the number of executed ordered
pairs. Table 3 shows that there are 666 executed or-
dered pairs in TE(OSC2). After all, the coverage of
OSC2 is

666
1936

× 100 = 34.4%.

Table 3. Executed ordered pairs.
before\ after client masterd convd

client 126 89 94
masterd 85 20 58
convd 84 51 59

5 Analysis

The 34.4% coverage is not sufficient. We analyze
all non-executed communication statements and or-
dered pairs in the phone program whether they are
executable or not. The number of all pairs is 1,936,
and 666 pairs were executed in the experiment. 1,276
pairs have not been executed. Table 4 shows the break-
downs of the analysis.

Table 4. Analysis of ordered pairs.
Total number of Ordered pairs 1,936
Executed pairs 666
Non-executed pairs 1,270
1,270 Non-executed pairs
(a) Non-executable pairs 87
(b) Communication between machines 405
(c) Signal procedures 215
(d) Error messages 427
Subtotal of (a),(b),(c),(d) 1,134
(e) The rest 136

We describe what each enumerated columns in Table

6

connect_daemon 36 stream 12
keyboard 36 stream 12
keyboard 38 tochild 12
main 113 dummy 16
readctl 7 ctl 11
readstream 11 stream 13
readchild 5 fromchild 13
readchild 21 stream 12
sendit 8 ctl 10
sendit 14 dummy 16
sendit 18 ctl 13
sigstop 6 stream 12
sigstop 9 stream 12
who 23 ctl 10
sigchld 25 misc 10
daemon 9 misc 10
daemon 21 misc 10
daemon 26 misc 10
daemon 32 misc 10
daemon 35 misc 10
daemon 46 misc 10
inquire 6 misc 10
answer 5 misc 10
dopage 18 misc 10
service 16 dummy 16
service 21 sock 11
page 9 misc 10
page 33 misc 10
reinvite 9 misc 10
who 9 misc 10
who 21 misc 10
who 29 misc 10
who 31 misc 10
main 30 dummy 16
main 40 cslot->fd 13
main 68 slots[i].fd 12
service 19 new 12
service 23 new 13
sendit 4 slots[i].fd 12
intro 9 fd 12
intro 14 fd 12
intro 30 fd 12
intro 32 fd 12
fatal 16 slots[s].fd 12

Figure 6. Contents of communication statements in the
phone program. (First field: function name, second
field: line number, third field:socket)

4 mean as below.

(a) non-executable pairs. : 87 pairs.
As shown in Table 2, there are 13 non-executed
communication statements. One of the 13 non-
executed statements is never an executable state-
ment. This statement is reserved for future exten-
sion in advance. Then, 44 × 2 − 1 = 87 ordered
pairs, which include the non-executable statement,
were not executed.

(b) Communication statements between processes on
different machines. : 405 pairs.
As mentioned in section 3, our monitoring tool
can not monitor an interprocess communication
between different machines yet. The tool can
not record the communications between machines.
However, if the tool supports the recording of the
communications between different machines, these
405 pairs will be covered.

There are 5 communication statements which are
only used for communications between different
machines. There are ((44 − 1) × 2) × 5 − 52 =
405 ordered pairs which include the statements of
communication between machines. The 405 pairs
were not recorded.

(c) Communication statements in signal processing
procedures. : 215 pairs.
In the phone program, there are 4 communica-
tion statements in signal processing procedures.
The monitoring tool ignores signal processing, be-
cause the tool must keep equivalence between the
real execution order of concurrency statements
and the order of concurrency statements which are
recorded in the file seq. If a target process receives
a signal, then the process will be forced to call a
procedure to process the signal. The target pro-
cess will be free from the control of the monitor
process, and the monitor process will exit. 215 or-
dered pairs which include those 4 statements were
not executed.

(d) Communication statements for error message. :
427 pairs.
In the phone program, 7 communication state-
ments are used for error messages. Error messages
were not issued in this experiment. ((44−1−5−
4) × 2) × 7 − 72 = 427 ordered pairs were not
executed, where the pairs which already appear in
(a), (b) and (c) are not counted.

(e) The rest : 136 pairs.
There are 136 pairs which are the rest of the non-
executed ordered pairs. We analyzed these pairs.

7

Then we found out that all of the 136 pairs are ex-
ecutable pairs, but they were not executed. If the
tool can arbitrarily change the execution timing
of each communication, then the 136 pairs will be
executed. To execute the 136 pairs, an execution
timing controller is required.

In the above analysis, pairs in (a) are not executable.
However, if the monitoring tool is improved and it can
monitor communications between different machines
and communications in signal procedures, then all pairs
in (b) and (c) will be executed. To execute the pairs
in (d), it is necessary to produce errors in execution of
the phone program. And if the tool has an execution
timing controller, then the pairs in (e) will be executed.
Table 5 shows the summary of the above analyses.

Table 5. Ordered pairs of the phone program.

Total number of ordered pairs 1,936
Executed pairs in the experiment 666
Pairs in (b),(c) 620
Pairs in (d),(e) 563
Possibly, executable pairs (= 666 + 620 + 563) 1,849
Non-executable pairs : (a) 87

6 Discussion

In the previous section, we showed that the proto-
type tool can monitor and record concurrent behav-
ior (the execution of concurrency statements). The se-
quence seq recorded by the monitor program can not
only be used for testing but for debugging informa-
tion. And we also presented that the prototype tool
can calculate the coverage of OSC2. And then, we ex-
pected that our monitor tool could be used for practical
testing. However, the tool still has some problems for
practical use. In this section, we discuss the remaining
problems of the prototype tool. And we also discuss
other applications of the tool.

6.1 Improvement

The coverage of OSC2 is about 34%, which is un-
satisfactory. However, as mentioned in section 5, if we
improve the prototype tool, the coverage of OSC2 may
possibly increase to 95.5% (= 1, 849/1936). The pro-
totype tool must be enhanced to support the following
functions for practical use in the future.

1. Communications between different machines.

The prototype tool can not record the execution
of concurrency statements on another machine.
The communication between the monitor and the
probe is implemented with the shared memory, the
semaphore, and the message queue system calls of
UNIX[7]. These system calls can work on the same
machine.

The monitor and the probe should be implemented
with the socket to record the execution order of
concurrency statements executed on different ma-
chines.

2. Signal procedures.

The signals are used for sudden interruption, cyclic
routine and error routine. When a process receives
a signal, the process is interrupted and goes to the
procedure which corresponds to the signal.

If there is a concurrency statement in a signal pro-
cedure of a process in the tested program, the pro-
gram may possibly be in deadlock. The monitor
process forces sequential execution of all concur-
rency statements.

3. Error simulator.

It is difficult to occur error states for phone pro-
gram by users. For supporting program execution
at testing, a test environment should have a sim-
ulation feature of input errors.

4. Execution timing controller.

To execute the non-executed ordered sequences,
a mechanism to force execution is needed. Tai
et al.[9] developed an approach to reproduce the
entry call arrival and rendezvous sequence (called
Syn-sequence) of an Ada program using an added
task for controlling the execution order. Our tool
needs a mechanism to force an execution sequence
deterministically at the execution of the tested
program.

Feature 1. and 2 require improvement of our tool.
Feature 3. and 4 require a program execution support-
ing tool as a test environment.

6.2 Probe effect

The program transformation approach must gener-
ate overhead arising from the insertion of the probes
and the monitoring process.

1. Justification.

Our tool transforms the tested program, inserts
probes and adds the monitor process. Then the

8

execution of concurrency statements in a trans-
formed program is sequentialized to record the ex-
ecution order. But the transformation doesn’t in-
troduce a new error. If an error occurs in the ex-
ecution of a transformed program, the error also
occurs in the execution of the original.

2. Overhead.

Our tool charges large time overhead to the trans-
formed program. We measured the execution time
from program beginning until session establish-
ment of both the original phone program and the
transformed phone . Table 6 shows the mean time
of execution. We executed the phone program 10
times, both the original and the transformed, on
the same machine Sun3/80. The times were mea-
sured with the time command of UNIX.

Table 6. Execution time.

Original Transformed
(sec) (sec)

Real time 9.4 270
User time 0.5 0.5
System time 0.5 0.5

Table 6 shows that the execution time of the trans-
formed program is about 27 times larger than
that of the original. One of the reasons for the
large overhead is the recording. The monitor pro-
cess records the execution sequence of concurrency
statements in the file seq as shown in Figure 7.
The access time to the file is much longer than
that to the main memory.

recording

File

s1, s5, s10, s44, s10, s_x, s_y , ...

seq.

processes

monitoring

monitor
process

Figure 7. Present system. The monitor process records
execution sequence in a file.

One solution to reduce the overhead is for all
records to be on the main memory. In this way,
the monitor doesn’t record the execution sequence,

because the sequence becames huge very quickly.
Instead of sequence, the monitor system allocates
an array of boolean for each test-event as shown
in Figure 8. The monitor checks executed pairs
(or k-length sequence). The access time to the
main memory is much shorter than that to the file.
Then, we can hope to reduce the time overhead.

However, it also produces scale problems. The
size of the array is in proportion to the number
of test-events. The number of test-events of OSCk

is |TE(OSCk)|k, an exponential number[1]. If k is
large, the size of array becomes huge. Then, it is
desirable to take the option to select both meth-
ods according to the scale of the test-events. In
the case of the OSC2, the number of test-events is
the square of the number of all concurrency state-
ments, and it may be possible to allocate the test-
event array on memory.

OSC1 OSC2

processes

monitoring

array[m]

array[m,m]

check

OSC3
array[m,m,m]

monitor
process

 m

 m

Figure 8. One solution. Allocate array according to
OSCk .

6.3 For another application

The prototype tool records the execution sequence
in a file. The sequence information can be used to a
debugging information. If a concurrency statement has
an error in execution and the monitor suspends execu-
tion of all processes in the program, then it can specify
which statement has the error. And the execution se-
quence which has the error can be used to reproduce
the error. If our tool supports deterministic execution
according to a given sequence, then the user can trace
the previous execution.

9

7 Conclusion

We have developed the monitoring tool of concur-
rent program execution. The tool monitors communi-
cation between processes in a C concurrent program
and reports the coverage of OSC2 (Ordered Sequence
Testing Criterion) which is used for testing evaluation.
This paper describes the tool and the experience.
The monitoring tool measures the coverage of OSC2

on the phone program which supports character based
conversation in a computer network. 34% ordered pairs
of the concurrency statements in the phone program
are executed in testing. It is possible to record concur-
rent behavior and to evaluate testing sufficiency with
the monitoring tool. However, the following improve-
ment of the tool and new execution support tool are
necessary for practical usage in testing.

1. Monitoring communication between different ma-
chines.

2. Recording execution of concurrency statements in
signal procedures.

3. Input simulator for occurrences of error states in
C concurrent programs.

4. Execution timing controller for forced execution of
C concurrent programs.

It is possible to increase the coverage of phone pro-
gram until 95.5% by those new features.
We are improving the monitoring tool and are plan-

ing the new test environment which includes input sim-
ulator and execution timing controller. In the future,
we will try empirical studies of improvement of concur-
rent program reliability.

References

[1] E. Itoh, Y. Kawaguchi, Z. Furukawa and K. Ushi-
jima : Ordered Sequence Testing Criteria for Con-
current Programs and The Support Tool, Proc. of
APSEC’94, pp.236-245, 1994.

[2] E. Itoh, Y. Kawaguchi, Z. Furukawa and K. Ushi-
jima : Reliability of Testing based on Ordered Se-
quence Testing Criteria for Concurrent Programs,
Trans. IPSJ, Vol.36, No.9, pp.2195-2205, 1996 (in
Japanese).

[3] Original : Jonathan C. Broome
(broome@ucb-vax.berkeley.edu), Japanized
: H.Tachibana (tachi@cs.titech.junet),
K.Odajima (odajima@mt.cs.keio.ac.jp)

:phone program, ftp://ftp.csce.kyushu-u.ac.jp/pub/
ok-phone1.2.tar.gz

[4] M. Ben-Ari : Principles of Concurrent Program-
ming, Prentice Hall International, Inc. 1982.

[5] W. E. Howden : Reliability of the Path Analysis
Testing Strategy, IEEE Trans. Softw. Eng., Vol.SE-
3, No.4, pp.226-278, 1976.

[6] S. J. Leffler, M. K. Mckusuck, M. J. Karels and J.
S. Quarterman : The Design and Implementation
of the 4.3BSD UNIX Operating System, Addison-
Wesley Publishing Co. Inc. 1989.

[7] W. R. Stevens : UNIX NETWORK PROGRAM-
MING, Prentice Hall Inc., 1990.

[8] R. N. Taylor,D. L. Levine and C. D. Kelly : Struc-
tural Testing of Concurrent Programs, IEEE Trans.
Softw. Eng., Vol 18, No.3, pp.206-215, 1992.

[9] K. C. Tai, R. H. Carver and E. E. Obaid : De-
bugging Concurrent Ada Programs by Deterministic
Execution, IEEE Trans. Softw. Eng., Vol.17, No.1,
pp.45-63, 1992.

10

