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Abstract— Currently the authors are studying on CSCW in
distributed 3D virtual spaces. A problem is how to keep the
same state among several computers for consistency. A log-
ical clock idea seems available to solve this problem because
it can perform user operation events in order according to
their happen times. The authors introduced the logical clock
idea into IntelligentBox, which is a constructive software de-
velopment system for interactive 3D graphics applications.
Furthermore, the authors evaluated its performances. This
paper describes the consistency mechanism and its appli-
cation examples, and also presents its performance evalua-
tions.
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I. INTRODUCTION

We have been studying on CSCW (Computer Supported
Cooperative Work). Various CSCW systems have been
studied and developed, for example, TV conference sys-
tems, remote lecture systems, etc. Recent advances in
computer and Internet technologies make it possible to de-
velop distributed virtual reality applications. Currently,
we are interested in CSCW in distributed 3D virtual envi-
ronments. In this paper, we presents a consistency mech-
anism for cooperative work in distributed 3D virtual envi-
ronments and its performance evaluations.

Okada and Tanaka proposed a IntelligentBox sys-
tem[1][2][3][4]. It is a user-friendly rapid prototyping soft-
ware development system for interactive 3D graphics appli-
cations. It represents objects as reactive 3D visual objects
called “boxes”. A box can be manually combined with other
bozes by the dynamic construction mechanism. With this
mechanism, users can develop application systems through
direct manipulations on a computer screen without writing
any text-based programs.

The IntelligentBox system also provides collaborative en-
vironments. This is realized by a functionality of a par-
ticular bozx called RoomBox. A RoomBox manages user-
operation events. Multiple RoomBoxes on different host
share user-operation events with each other so that the
multiple RoomBoxes virtually provide a shared 3D space.

The well-known problem of distributed applications is
how to keep the same state among several computers for
consistency. To keep consistency needs to realize mu-

tual exclusion mechanisms and ordering mechanisms of dis-
tributed events.

A simple and traditional but practical solution is to use
the server-client model. The centralized server process (the
daemon process, in other words) manages all states of each
clients, and each clients follow the server. However, this
server-client model needs a high performance computer as
a server, and a network traffic and a maintenance of the
server becomes serious problem.

We selected the distributed model, i.e., each host com-
municates to each other by a point-to-point connection.
The logical clock idea[5] is available for the distributed
model because it can execute user-operation events in or-
der according to their happen times. Each host commu-
nicates to each other and coordinates each state using the
logical clock. We introduced a logical clock idea into the
IntelligentBox system and furthermore evaluated its per-
formances. This paper describes the detail of the consis-
tency mechanism based on the logical clock, and presents
its performance evaluations.

The remainder of this paper is organized as follows. Sec-
tion II describes CSCW systems and distributed 3D virtual
environment applications. In section ITI, we describe our
consistency mechanism using the logical clock. Section IV
shows an implementation of the mechanism in the Intelli-
gentBox system, and also shows examinations. Section V
discuss the performance. Finally, we conclude this paper
in Section VI.

II. COOPERATIVE WORK IN DISTRIBUTED
3D VIRTUAL SPACES

A. CSCW Tools

There has been a lot of researches and systems on
Computer Supported Cooperative Work, for example, TV
conference systems[6][7], group editors[8][9], task coordi-
nation systems[10]. TV conference systems are divided
into two types, i.e., point-to-point communication TV
conference systems and multi-attendants TV conference
systems. The latters employ a server-client model. A
main requirement of TV conference systems is a real-time
communication facility for video and audio data on the
Internet. The related systems includes DOLPHINJ[11],
CLEARBOARD]J12], Conversation Board[13], DisEdit[14],
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Argo[15], and so on. DOLPHIN is a remote meeting sys-
tem that provides collaborative pen-based workspaces for
window-based meeting. CLEARBOARD is an interper-
sonal design system based on video cameras. Conversation
Board is a shared window-based conversation system using
RENDEZVOUS[16].

Above application systems provide multiple users with
2D, not 3D, collaboration environments. Our research in-
terest focuses on CSCW systems in distributed 3D virtual
environments. Then we use the IntelligentBox system as
our research system. Next subsection briefly introduce the
IntelligentBox system.

B. The IntelligentBoz system

IntelligentBox is a constructive visual software develop-
ment system for interactive 3D graphics applications. Intel-
ligentBox provides 3D reactive objects called bozres. Each
bozx has a 3D visible shape and a unique function. Indeed
each box consists of a model and a display object. A model
holds state variables of a box. They are called “slots.” A
display object defines how the box appears on a computer
screen and defines how the box reacts to user operations.
Intelligent Box also provides a dynamic data linkage mecha-
nism called a slot-connection for combining functions of two
bozes. By this mechanism, users can develop 3D graphics
applications through direct manipulations on a computer
screen without writing any text-based programs. This is a
main feature of the IntelligentBox system.

(1) set <dotname><value>
(2) gimme <value>
(3)update

(parent)  glots

Fig. 2. Standard messages between bozes

Fig.2 shows a data linkage concept by slot-connections.
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Actually a slot-connection is realized by a message sending
protocol consisting of three standard messages, i.e., a set
message, a gimme message, and an update message. By
these three messages, states of two boxes are exchanged
and their two functions are combined.

As previously mentioned, the IntelligentBox also pro-
vides collaborative environments by a functionality of a
particular box called a RoomBox. Fig.1 shows a concept of
sharing user-operation events using two RoomBoxes exist-
ing separate hosts.

As shown in Fig.1, the RoomBox has a slot named ’event’
which holds a current user-operation event operated on its
descendant bozes. Some specific user-operation events gen-
erated in a RoomBox are always stored in this slot until
the next event is generated. As shown in Figl, Intelligent-
Box provides a distributed model sharing mechanism. It
enables multiple, distributed RoomBoxes to virtually share
a common model with each other through messages passed
via a network. By the distributed model sharing mecha-
nism, multiple RoomBoxes can share user-operation events
with each other. Here, descendant boxes of a RoomBox are
treated as collaboratively operable 3D objects.

The structure shown in Fig.1 can be built only by making
a copy of a RoomBox on Host A and transferring it to
Host B. Therefore, using RoomBoxes, users can develop
collaborative 3D virtual environments easily and rapidly.

Fig.3 and 4 show screen images of a Tank Battle game
developed by IntelligentBox. Two players using a different
host play the game simultaneously. This tank battle game
is developed easily and rapidly by using IntelligentBox.

IntelligentBox provides good collaboration environment,
but it has a problem for consistency. If multiple users op-
erate a box at the same time (in a short period) and the
operations conflict with others, then the states of each host
becomes inconsistent.

III. CONSISTENCY MECHANISM

The well-known problem of cooperative systems in dis-
tributed environments is how to keep the same state among
several hosts for consistency. To keep consistency of dis-
tributed systems, mutual exclusion mechanisms and order-
ing mechanisms of distributed events have been studied and
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Fig. 3. A Tank Battle Game (1)

developed.

Latency exists in the communication between two hosts,
and it may cause inconsistency. For example, let consider a
distributed real-time interactive application like a car race
game, multiple users play it simultaneously. In the case
that a user’s operation event is generated at the almost
same time as another user’s operation event, if the two
events are executed in the different order on each host, the
states of two hosts will be different.

To keep consistency of shared resources in a distributed
environment, there are some solutions, i.e., a centralized
model, a token ring model and a distributed model[18].

Centralized model

A simple but practical approach to keep consistency is
to use the server-client model. This model assumes that
a centralized server process (the daemon process, in other
words) works as the manager or (fearless) leader. It keeps
the important information and makes all decisions, and all
clients obey the sever.

Here is how a client would operate a shared resource R.

1. Sends a request to the server

2. Waits for a reply from the server

3. Uses a resource R

4. Sends a release notice to the server
This means that there are three redundant messages per
one resource request.

In the case that there is not any event buffer, if the server
process receives multiple requests at the same time, the
server selects only one client process, sends “OK” message
to it, and sends “rejection” messages to the others.

In this model, tolerance of a distributed system depends
on the performance of the server. If the load of the server is
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Fig. 4. A Tank Battle Game(2)

over its limit, the total performance will decrease. Further-
more it is obvious that if the server fails, all client processes
will not work any more. These are defeats of the server-

client model.
Request Request . Permi
Requiest

Fig. 5. The client-server model
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This model assumes that there is a communication topol-
ogy among the processes, which is a ring. Although a
process P; communicates directly to its two neighboring
processes P;_1 and Pjy1, a token reaches indirectly to any
process through sequential operations of reading a token
from a left process and writing the token to a right process
as shown in Fig.6. Only one process holds a token at a cer-
tain time. This process has ownership. This means that
only this process operate a shared resource.

A mutual exclusion mechanism is realized by the follow-
ing way.

1. Connects all processes in a logical ring. The ring is

called as a token ring.

2. The token hops and circulates all processes along with

the ring.

3. Only the process which holds the token is able to op-

erate shared resources.
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This is a good way of enforcing mutual exclusion in a fair
way, however, there are problems. It is necessary to con-
struct the token ring before the beginning of collaboration.
If any one process may fail, the ring must be reconstructed.
If a token may be lost, any mechanism must be prepared
to decide a process that creates a new token.

Distributed model

Let consider the number of process is n, they possi-
bly work at different hosts. When each process needs the
shared resource, it sends a request to the other (n-1) pro-
cesses; when it receives (n-1) replies, it comes to use the
resource. When the process finishes using the resource, it
sends a release message to all the processes that are waiting
for the resource.

This model assumes a reliable mechanism for delivering
messages. Each use of the critical shared resource, requires
2% (n — 1) messages.

Here is the Ricart-Agrawala algorithm to realize mutual
exclusion[17].

1. Before operate to a shared resource, each process
sends “request” message to all other processes. The
request message contains the shared resource name,
process number and current time.

2. When a process receives the request message, it replies
as follows:

e If not in use and does not want, reply OK.
o If in use, queues request (no reply).
o If wants to use, compare timestamp in request to its
own. If lower sends OK, otherwise queue.
o Requesting process waits until everyone sends it an
OK message.
When exiting dequeues all processes and sends OK.
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Fig. 7. The decentralized model

The performance of this model is not so high but it is
robust. This model can also handle dynamic join and leav-
ing of a group. The problem of this approach is how to

decide which request message is the fastest among others,
in other words, all events in the distributed hosts must be
totally ordered.

It can’t rely on the physical clock time on each host.
They don’t show an accurate time and it is impossible to
synchronize all physical clocks. Lamport proposed the log-
ical clock idea for this problem in [5]. We used the logical
clock idea to solve the problem.

The logical clock

Lamport proposed logical clock in [5] to order the events
occurring in a distributed system. Certainly if an event
A happens before an even B, then A cannot have been
caused by B. In this situation we cannot say that A caused
B, but we cannot exclude that it might have influenced it.
We want to characterize this ”happened-before” relation
on events. We will consider only two kinds of events, the
sending of a message and the receiving of a message.

1. If events e; and ey occur in the same system and el
occurs before e; (there is no problem to determine this
in a single system) then e; happened-before eq, written
e1 — ea.

2. If event e is the sending of a message and ey is the
receiving of that message, then e happened-before es.

3. If e — e9 e — e3 then e; — e3.

The — relation is a partial order. Given events e; and es
it is not true that either they are the same or one happened-
before the other. Events that are not ordered by happened-
before are said to be concurrent.

This happened-before relation is unsatisfactory since,
given two events, it is not immediate to determine if one
happened before the other or if they are concurrent.

We could like a clock C that applied to an event returns
a number so that the following holds:

If e; — ey then C(er) < Clez) .

He defined one such C, a logical clock, as follows:

1. On each process P; starts with a clock L; set at 0.

2. If e is the sending of a message, then increment the
local clock L;, set C(e) to L; and timestamp the mes-
sage with L;.

3. If e is the receiving at P; of a message with timestamp
t, then set the local clock and C(e) to max{t, Li+1}.

Fig.8 is an example showing logical clocks and mutual
exclusion of distributed model. A, B, C are processes and
the number n in “[ ]” shows local logical clock time. In this
case, A and C want to operate a shared resource. Their
request messages and OK replies are arrived as shown in
lower part of Fig.8. Each process acts according to the
Ricart-Agrawala algorithm. Finally, process C' gets the
first priority for operation to the shared resource.

IV. IMPLEMENTATION AND EXAMINATION

A. Implementation

As mentioned in section II-B, the IntelligentBox system
didn’t have enough consistency mechanism. The Intelli-
gentBox system provides a virtual space shared by mul-
tiple hosts using RoomBoxes. Multiple users can operate
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Fig. 8. An example showing logical clocks and mutual exclusion of
the distributed model

Boxes in the 3D virtual space. But there may be inconsis-
tent states, if more than one user operates a box simultane-
ously. For consistency, we have introduced an object lock
mechanism to realize mutual exclusion.

We chose the distributed model for this implementation,
because the distributed model is robust and it doesn’t need
any server. Although the communication cost of the dis-
tributed model is higher than both the sever-client model
and the token ring model, the number of hosts (users) we
assume will not so much, at most about 10 hosts. Then
the communication cost will not be so much.

Fig.9 shows the state transition of each process. To lock
a boz in a 3D virtual space, each process behaves according
to this state transition.

B. Examinations

We had three examinations with respect to three types
of network topologies. Fig.10, 11 and 12 show the network
topologies. Here is the characteristics of the topologies.

e Exam.1 : 3 hosts on the same subnet.

e Exam.2 : 3 hosts on 2 subnets.

o Exam.2 : 4 hosts on 2 subnets.

Host A _ Host B
CPU Pentium Il
450MHz

Memory 192MB
os Windows98

CPU Pentium 11
450MHz
Memory 256MB

os WindowsNT
10Mbps 100Mbps
[, {1
100Mbps
Host C
CPU Pentium Il 266MHz
Memory 96MB
os Windows98

Fig. 10. Network topology of exam.1

We used a simple application shown in Fig.13 for ex-
aminations of realtime distributed collaborations. The box
shown in Fig.13 consists of three primitive bozxes, two cubic
bozes and one cylindrical boz.

Operations for realtime distributed collaboration in these
examinations are very simple, mouse click and drag. When

Host A Host C

CPU Pentium 11
450MHz

Memory 192MB

os Windows98

CPU Pentium 11
266MHz
Memory 96MB

os Windows98
O 10Mbps 100Mbps a
CPU Pentium 11 266MHz
Memory 128MB
0os Windows98
Fig. 11. Network topology of exam.2
Host A Host C
CPU  Pentium Il CPU  Pentium Il
450MHz 266MHz
Memory 192MB Memory 96MB
os Windows98 os Windows98
O 10Mbps 100Mbps a
100Mbps
Host E
CPU Pentium
200MHz
Memory 64MB
0os Windows98

Pentium 11 266MHz
Memory 128MB
0os Windows98

Fig. 12. Network topology of exam.3
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Fig. 13. A Screen image of the application used examinations
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a user clicks on a box, if the click is the fastest in other
clicks, he/she gets ownership of the Box. After that, the
user can operate (move, rotate, etc..) the boz until he/she
releases it.

C. Results

We examined the implementation in three cases. 3 or
4 users used an application (shown in Fig.13) in different
network environments. Operation records were stored in
log files.

Table I, II, IIT, IV were analysis results of log files. Table
I describes latency times from sending “Requests” until
receiving “OKs”. Table II, III, IV describe response times
of operations.

TABLE 1
LATENCY TIME FROM “REQUEST” UNTIL “OK”

Exam.l | Exam.2 | Exam.3
‘ (msec) ‘ (msec) ‘ (msec)
The mean 237 445 503
Minimum 99 165 235
Maximum 360 907 967

V. DISCUSSION
A. Latency time for obtaining ownership

From Table I, while the mean latency time of the exam-
ination 2 is close to the examination 3, the mean latency
time of the examination 1 is almost half of the examina-
tion 2 or 3. Therefore, it can be said that the elapsed time

TABLE II
RESPONSE TIME FOR OPERATION TO bozxes (IN EXAM.I)
B C
Mean 162 | Mean 214
A | Min 99 | Min 97
Max 242 | Max 360
Mean 296
B Min 267
Max 330
(msec)
TABLE III
RESPONSE TIME FOR OPERATION TO bozes (IN EXAM.2)
C D
Mean 204 | Mean 388
A | Min 32 | Min 264
Max 357 | Max 907
Mean 306
C Min 144
Max 829
(msec)

for message transfer between two different subnets occupied
the major part of the latency time for obtaining ownership.

B. Granularity of events

The second row of Table IT shows that the response time
of the host C concerning the host A is smaller than con-
cerning the host B, and the first column of Table III shows
that the response time of the host A concerning the host



TABLE IV
RESPONSE TIME FOR OPERATION TO bozes (IN EXAM.3)

C D E
Mean 269 | Mean 273 | Mean 384
A | Min 231 | Min 229 | Min 110
Max 299 | Max 319 | Max 967
Mean 280 | Mean 420
C Min 238 | Min 305
Max 314 | Max 535
Mean 401
D Min 273
Max 869

B is smaller than concerning the host C. Then, it is found
out that there is the order, the host A < host B < host C,
for the response time. This reason is obvious because the
above order is the same as the order of three computers
CPU speeds. From Table III, the mean time of the three
maximum response times is 311 msec = (242+360+330)/3.
Therefore, at least, three operation events seem executable
in a second in the case shown in Fig.10. As well, from Table
IV, the mean time of the three maximum response times
is 697 msec = (357+907+829)/3. Therefore, at least, one
operation event seems executable in a second in the case
shown in Fig.11. In this way, granularity of events is an
important factor. This depends on application types, i.e.,
a real-time application or not. Furthermore, when develop-
ing a practical application, you have to consider the number
of computers and a network type, WAN or LAN.

C. Improvement of System Performance by Timeout mech-
anism

From Fig.12, while the host A, C, E are all existing on
the same subnet, the host D is only existing on the another
subnet. Then, it can be thought that the host D would
become a bottleneck. However, Table IV shows that the
host E rather than the host D was a bottleneck. This reason
is also obvious because the host E is a lowest performance
computer and its graphics hardware is not sufficient for
rendering 3D images.

If the host E is removed from the system, the system
performance would become better. Therefore, one way to
improve system performance is to remove hosts whose re-
sponse time is very large compared with the average re-
sponse time, by a time-out mechanism. We are trying to
introduce this mechanism.

VI. CONCLUSION

In this paper, we showed a consistency mechanism for
distributed CSCW systems. We used the IntellligentBox
system which is a user-friendly development software for
interactive 3D graphics applications. It provides collabo-
rative environments, however its consistency management
mechanism was not sufficient.

We introduced mutual exclusion and object locking
mechanism to the IntelligentBox system. We used the

logical clock idea for consistency of distributed systems.
Although communication cost for mutual exclusion of the
distributed model is higher than the sever-client model or
the token ring model, but it is robust, and its cost is not
so much when the number of hosts is small.

We also implemented and examined an application in
three cases. We measured latency time to get ownership
of a box and response time to operate it. From the results
of examinations, we found out that the lowest performance
computer becomes a bottleneck, so it is possible to improve
system performance by using timeout to remove such lower
performance computers.

In the future, we are supposed to develop more practical
applications, e.g., networked education systems, realtime
network games, and so on. We will report these findings.
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