
DISTRIBUTED AUDIO-VIDEO SHARING

BY COPY-AND-TRANSFER OPERATION
FOR NETWORK 3D GAMES

Hirotatsu Sakamoto Yoshihiro Okada Eisuke Itoh Masafumi Yamashita
Graduate School of Information Science and Electrical Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
Phone: +81-92-642-3872, Fax: +81-92-583-7632

hirotatu@swlab.csce.kyushu-u.ac.jp okada@i.kyushu-u.ac.jp itou@cc.kyushu-u.ac.jp mak@csce.kyushu-u.ac.jp

KEYWORDS

Network 3D games, Audio-video communication,
Copy-and-transfer, Component ware, Distributed
virtual environments

ABSTRACT

This paper treats distributed audio-video shar-
ing mechanisms for the development of network 3D
games. Especially the authors propose the concept
of the copy-and-transfer operation. This concept is
that making a copy of a visible, manually opera-
ble software component and transferring it to an-
other computer enable users to share it. If a fa-
cility that manages audio or video data is realized
as such a component, even end-users can easily and
rapidly build audio-video communication environ-
ments through the copy-and-transfer operation. This
paper explains realization mechanisms of the copy-
and-transfer operation and describes its availability
by showing network 3D game examples.

1 INTRODUCTION

Advances of computer hardware technologies
make it possible to create 3D images in real-time,
so that 3D graphics software has become in great
demand. For this reason, we have been studying
3D graphics software development systems and us-
ing IntelligentBox [Okada and Tanaka 1995] as our
research system. IntelligentBox is a component ware,
which provides various software components as visi-
ble, manually operable 3D objects called boxes. In-
telligentBox also provides a dynamic data linkage
mechanism called slot-connection that enables users
to construct 3D graphics applications by combin-
ing existing boxes through direct manipulations on
a computer screen. Okada et al. described that
IntelligentBox is available for the development of
interactive 3D games and also network 3D games

[Okada et al. 2000]. For network 3D games, face-
to-face communication by audio/video media enables
players to feel their enemy’s emotion and it enhances
enjoy-ability during playing a game. Especially for
group battle games, audio-video communication is
necessary to effectively and strategically play games.

Then this paper treates a distributed audio-video
sharing mechanism. Especially we describe a new
concept of the copy-and-transfer operation. This
copy-and-transfer operation is similar to the copy-
and-paste/cut-and-paste operations, which are stan-
dard GUI operations based on using a mouse-device.
With the copy-and-transfer operation, even end-users
come to easily and rapidly build audio-video com-
munication environments. IntelligentBox provided a
video managing facility as a VideoBox. However this
version of VideoBox was not available through net-
work. So we improved it in order to support video
communication via network [Sakamoto et al. 2001].
We have also been developing boxes to manage au-
dio media through network. Furthermore a par-
ticular box called RoomBox exists for providing a
shared 3D space [Okada and Tanaka 1998]. Using
these boxes, i.e., RoomBox, VideoBox and audio man-
aging boxes, which support audio-video communica-
tion, only through copy-and-transfer operations, it
will be possible to build network 3D games. In this
paper, we clarify availability of this copy-and-transfer
operation by discussing development costs and per-
formances with showing possible, practical applica-
tion examples.

Related works

Our research purpose is to establish software ar-
chitecture that makes it easier to develop 3D graph-
ics applications. Related works are 3D softoware de-
velopment systems including DIVE [Hagsand 1998],
MASSIVE [Greenhalgh and Benford 1995], MERL
[Anderson et al. 1995][Barrus et al. 1996], dVS
[Ghee 1995], MR Toolkit [Shaw et al. 1993]. DIVE

Copy

Transfer

Information sharing

: visible, manually operatable object

network

virtual environment A virtual environment B

Figure 1: The concept of copy-and-transfer.

is a virtual reality construction toolkit system. It
has network communication facilities by audio and
text media. MASSIVE is a remote conference sys-
tem based on sharing a 3D virtual space. It has a
text-to-audio communication facility, but not a video
communication facility. MERL is a development sys-
tem for collaborative virtual environments. It allows
us to communicate by audio and text media. dVS is
a commercial product as a virtual reality construc-
tion toolkit. It allows us to develop distributed col-
laborative applications, but does not provide audio-
video communication facilities. MR Toolkit is a vir-
tual reality construction toolkit system at a library
level. Although these are very powerful systems, it is
not easy to use their essential mechanisms when de-
veloping distributed 3D graphics applications. Our
research system IntelligentBox provides various 3D
software components represented as visible, manually
operable, and reusable objects. Furthermore the In-
telligentBox system provides a dynamic data linkage
mechanism. These features make it easier even for
end-users to develop 3D graphics applications includ-
ing network 3D games. This is the main difference
between IntelligentBox and the others.

The remainder of this paper is organized as fol-
lows: Section 2 describes the copy-and-transfer con-
cept. Section 3 explains essential mechanisms of
IntelligentBox and RoomBox. In section 4, we ex-
plain audio-video data sharing mechanisms. Section
5 discusses development costs and performances with
showing possible, practical 3D game examples. Fi-
nally, we conclude this paper in section 6.

2 COPY-AND-TRANSFER

Object-oriented programming becomes very com-
mon because of its reusability of software componets
and its availability of bottom-up programming man-
ner. However, conventional object-oriented program-

Figure 2: An MD structure of a box and its internal
messages.

Figure 3: Standard messages between boxes.

ming is not enough for end-users, who do not have
any programming knowledge, since it requests users
to write text-based programs. We think that software
components should be represented as visible, man-
ually operable objects because such software com-
ponents allow even end-users to develop software
only by combining them interactively on a computer
screen. Furthermore, for such visible, manually op-
erable components, it is possible to execute the copy-
and-transfer operation as shown in Figure 1. In this
figure, the user using the left computer can make a
copy of a certain component, and transfer it to the
right computer. This operation is done only with
manual operation using a mouse-device on a com-
puter screen. If the copy and its original software
component keep the same states, two users using
each computer can share the same data as its states.
Therefore the copy-and-transfer operation of audio-
video managing components allows users to share
audio-video data via network.

3 ESSENTIAL MECHANISMS OF INTEL-
LIGENTBOX

The following essential mechanisms are inherited
from IntelligentPad [Tanaka 1996], which is a 2D
synthetic media system, to IntelligentBox, since In-
telligentBox is an extension of IntelligentPad to 3D
graphics applications.

Figure 4: Message flow between two RoomBoxes for network collaboration.

3.1 Basic structure of box

As shown in Figure 2, each box consists of two
objects, a model and a display object. This structure
is called an MD (Model-Display object) structure. A
model holds state values of a box. They are stored
in variables called slots. A display object defines how
the box appears on a computer screen and defines
how the box reacts to user operations.

Figure 2 is an example of a RotationBox. A Ro-
tationBox holds a rotation angle as its slot value.
Through direct manipulations on the box, this slot
value changes(1© 2©). Furthermore, its visual image
simultaneously changes according to the slot value
change(3© 4©). Then the box reacts to the user ma-
nipulations according to its function(5©).

3.2 Message-sending protocol for slot con-
nections

Figure 3 illustrates a data linkage concept between
boxes. Each box has multiple slots. Its one slot can
be connected to one of the slots of other boxes. This
connection is called a slot connection. The slot con-
nection is carried out by three messages.

A set message(1©) writes a child box slot value into
its parent box slot. A gimme message(2©) reads a
parent box slot value and sets it into its child box
slot. An update message(3©) is issued from a parent
box to all of its child boxes to tell them that the parent
box slot value has changed. In this way, these three
messages connect a child box slot and its parent box
slot, and combine their two functionalities.

3.3 A shared-copy and a distributed model-
sharing

The MD structure allows more than one box to
share the same common model. This mechanism is
called model-sharing and the operation that gener-
ates a copy of a display object sharing a common
model is called shared-copy. A box generated by the
shared-copy operation shares all slot values. After one
of model-shared boxes is transferred to another com-
puter via network, a new corresponding box is gen-
erated in that computer and the box has the same
slot values and keep them always by messages via
network to conserve consistency of slot values. This
means distributed model-sharing.

3.4 RoomBox for collaborative virtual envi-
ronments

This section briefly describes an idea of a shared
3D space and a functionality of a RoomBox. As
shown in Figure 4, the RoomBox has a slot named
‘event’ which holds a current user-operation event
operated on its descendant boxes. Some specific user-
operation events generated in a RoomBox are always
stored in this slot until the next event is generated.
As mentioned above, IntelligentBox provides a dis-
tributed model-sharing mechanism. By this mecha-
nism, multiple RoomBoxes can share user-operation
events with each other. Here, descendant boxes of
a RoomBox are treated as collaborative operable 3D
objects.

In Figure 4, there are two RoomBox models exist-
ing separately on a different computer. These models
are kept in the same state by messages passed via net-
work. This linkage is built easily and rapidly by mak-
ing a shared-copy of a RoomBox on one computer and
by transferring it to the other computer. When a user

slot
connection

MovieBox

VideoBox

SoundBox

MicBox

movie file

video camera
 device

sound file

mic device

ScreenBox

ScreenBox

SpeakerBox

SpeakerBox

:Model of Box :frame slot in Model

Figure 5: Boxes managing audio-video data and their pairs.

operates one box in the RoomBox on the computer A,
his operation event is sent to the RoomBox model and
subsequently set in its event slot. Furthermore, this
event is sent to the other RoomBox model existing on
the computer B by a message. After these processes
are completed, the operation event is applied to the
corresponding box on the computer B. In this way, by
using distributed RoomBoxes, user-operation events
are shared among several computers.

4 DISTRIBUTED AUDIO-VIDEO SHAR-
ING MECHANISMS

As previously mentioned, using RoomBoxes, it
is possible to build collaborative virtual environ-
ments easily and rapidly. As well if boxes that man-
age audio-video data exist, it is possible to build
audio-video communication environments easily and
rapidly by their copy-and-transfer operations. Then
we designed and implemented six boxes managing
audio-video data as follows. Actually four boxes are
used for audio-video communication, i.e., the pair of
VideoBox and ScreenBox for video communication,
and the pair of MicBox and SpeakerBox for audio
communication.

1. MovieBox reads movie data from a movie file.
2. VideoBox gets movie data from a video camera

device.
3. ScreenBox displays movie data onto its surface

as texture images.
4. SoundBox reads audio data from a sound file.
5. MicBox gets audio data from a mic device.
6. SpeakerBox outputs audio data to a speaker de-

vice.

Figure 5 illustrates the usage of the six boxes.
We can implement audio-video facilities as just one
software component like Microsoft MediaPlayerTM .
However we designed them as six components se-
paretely because of the following. We think that
software components should be as simple as possi-
ble and should have the same metaphor as existing
things in the real world. Such software components
are very easier for end-users to deal with and have
high reusability.

4.1 Boxes managing video data

MovieBox, VideoBox, and ScreenBox manage
video data. MovieBox and VideoBox are used for
reading video data, and ScreenBox are used for dis-
playing video data. The texture-mapping technique
is used to display a binary 2D image in a 3D virtual
space. Strictly speaking, a texture image is mapped
on the surface of a 3D object, i.e., a box. These
boxes have a ‘frame’ slot in its model. A texture
image is loaded and stored in this slot. Periodical
updates of the slot content allow us to see an anima-
tion. MovieBox and VideoBox also have a ‘TRIG-
GER’ slot. Whenever ‘TRIGGER’ is accessed, the
next frame will be loaded. Actually a TimerBox
is used to access the ‘TRIGGER’ periodically by a
slot-connection. A TimerBox holds a timer value,
which periodically increases every user-specified in-
terval time, in its ‘time’ slot. Then this box is used
as a timer to notify MovieBox and VideoBox of its
timing to get new frame of video data.

Figure 6 and Figure 7 illustrate distributed video
data shaing mechanisms using VideoBox and Screen-
Box. Figure 6 is the case without using RoomBox.

Computer A Computer B

slot connection

VideoBox A

ScreenBox A ScreenBox A’

ScreenBox B’

slot connection

ScreenBox B

VideoBox B

Figure 6: Distributed video data sharing mechanisms
without RoomBox.

Computer A Computer B

slot connection

slot connectionVideoBox A

ScreenBox A

ScreenBox B’

VideoBox B’

slot connection

slot connectionVideoBox A’

ScreenBox A’

ScreenBox B

VideoBox B

event event

Figure 7: Distributed video data sharing mechanisms
with RoomBox.

We can build this structure by means of the copy-and-
transfer operation of ScreenBox. This is the simplest
way to share audio-video data between two comput-
ers. For network 3D games, we have to build collab-
orative virtual environments using RoomBoxes.

Figure 7 is the case with using RoomBox. We
can also build this structure by means of the copy-
and-transfer operation of RoomBox, which contains a
composite box of VideoBox and ScreenBox. Actually
a RoomBox contains its child boxes, which are collab-
orative operable 3D objects. In this way, even end-
users can build collaborative virtual environments in-
cluding audio-video communication for network 3D
games.

4.2 Boxes managing audio data

SoundBox, MicBox, and SpeakerBox manage au-
dio data. SoundBox and MicBox are used for reading
audio data, and SpeakerBox for playing audio data.
These boxes have the common structure for manag-
ing audio-data. Actually these boxes have a dedi-
cated buffer called ”audio buffer,” a ‘frame’ slot, and
an ‘always’ slot. The audio buffer is used for storing
temporal audio data sent from an audio device or
read from an audio file. A part of the audio buffer is
mapped to a ‘frame’ slot. The size of this slot is fixed.

The timing of updating this slot value is controlled
by an ‘always’ slot, which has a boolean value. If an
‘always’ slot value is true, the update timing is asyn-
chronous. Strictly speaking, in the case of SoundBox
and MicBox, audio data sent from a source is once
written to audio buffer and its part is sent to a ‘frame’
slot asynchronously. In the case of SpeakerBox, audio
data stored in its ‘frame’ slot is written to a part of
an audio buffer asynchronously and is sent to speaker
device. Actually a ToggleSwitchBox is used to change
the ‘always’ slot value since a ToggleSwitchBox has a
boolean value in its ‘State’ slot and it can be used as
a switch.

5 DISCUSSION

This section discusses possible, a practical appli-
cation example, their development costs and perfor-
mances.

5.1 A practical application example

Figure 8 shows two screen images of a network
game, which is a tank battle game actually we have
already developed. In this example, there are two
players each using a different computer. The left fig-
ure is a screen image of one computer and the right
figure is that of the other one. As for the left fig-
ure, the upper right small view is a camera view of
a CameraBox attached to the tank controlled by this
computer’s player. Each player can control his own
tank with looking at the each camera view. Fur-
thermore the two upper left small images are two
players faces displayed using VideoBoxes. As this
example case, face-to-face communication is impor-
tant for enhancement of enjoy-ability during playing
a game. Especially for a group battle game, audio-
video communication is necessary to effectively and
strategically play a game. Then our proposed copy-
and-transfer operation is significant since it allows
even end-users to construct network 3D games.

5.2 Development costs

We give an outline of the simplest way to cre-
ate an application with video communication using
VideoBox, RoomBox and TimerBox:

1. Compose a composite box from a TimerBox and
a VideoBox.

2. Connect the ‘time’ slot of the TimerBox and
the ‘TRIGGER’ slot of the VideoBox by a slot-
connection through a menu selection.

3. Define the composite box as a descendant of a
RoomBox.

4. Make a copy of the RoomBox and transfer it to
another computer.

Figure 8: A distributed tank battle game.

In this way, construction process for video commu-
nication, based on the copy-and-transfer operation, is
very simple and easy for even end-users. This pro-
cess is done immediately only through mouse-device
operations.

As mentioned in the paper[Okada et al. 2000],
using IntelligentBox, it is possible to build 3D
games without writing any text-based programs only
through direct manipulations on a computer screen.
The network game example without audio-video
communication presented in this paper was also de-
veloped in several hours only through direct manip-
ulations on a computer screen.

5.3 Performances

We experimented to evaluate the performance of
video communication. So we executed a copy-and-
transfer operation to each VideoBox on two comput-
ers and created video communication environment.
The environment we experimented is as follows:

• computer A

– CPU: Pentium III 800MHz
– Memory: 256MB
– Network: 100Base-TX
– OS: Windows 98
– Graphics Card: Geforce

• computer B

– CPU: Pentium III 450MHz
– Memory: 256MB
– Network: 100Base-TX
– OS: Windows NT
– Graphics Card: Cobalt

Parameters are as follows:

• uni-direction or bi-direction

• frame rate(frame/sec)
• resolution(the numbers of vertical pixel × the

numbers of horizontal pixel)
• color depth(byte/pixel)

Table 1 shows frame rates in some cases. For in-
stance, the left lower values, i.e., 2.5 and 0.2, mean
the frame rate of computer A to computer B and
the frame rate of computer B to computer A respec-
tively in the case that communication is bi-direction,
frame resolustion is 128×128 pixels, and color depth
is four byte/pixel. The frame rates of computer A to
computer B are larger than the frame rates of com-
puter B to computer A because of the difference of
CPU peformances of computer A and computer B.
In any case, the table does not show performances
enough for practical use since we didn’t use any data
compression technique nor particular communication
protocol. So communication performce can be im-
proved if these techniques are used. These are left as
a future work.

6 CONCLUDING REMARKS

This paper presented distributed audio-video shar-
ing mechanisms for the development of network 3D
games. Especially the new concept, i.e., the copy-
and-transfer operation, was proposed and its realiza-
tion mechanisms were explained. If a software com-
ponent is represented as a visible, manually operable
object, the copy-and-transfer operation on such an
object becomes possible. Then if a facility that man-
ages audio-video data is realized as such a visible,
manually operable object, even end-users can easily
and rapidly build audio-video communication envi-
ronments through the copy-and-transfer operation.
This paper clarified the availability of the copy-and-
transfer operation by discussing development costs
and performances of applications with showing net-
work game examples.

128 x 128
4

128 x 128
1

64 x 64
4

64 x 64
1

A -> B

B -> A

B -> A

uni-direct

bi-direct

B

A
stand-alone

18.0 18.0 18.0 18.0

 6.6 6.6 6.1 6.1

resolution (pixel)
depth (byte/pixel)

frame rate (frame/sec)

A -> B

0.3 0.9 0.9 3.4

0.80.2 3.10.9

17.0 2.5 18.010.3

2.6 18.1 10.3 18.1

Table 1: Frame rate of VideoBox.

ACKNOWLEDGEMENTS

We would like to thank all members of our labo-
ratory for their advices and suggestions. This work
is partially supported by foundation for Fusion Of
Science and Technology(FOST) of Japan.

References

[Anderson et al. 1995] Anderson, B., D., Barrus, W.
J., et al., 1995. ”Building Multiuser Interactive
Multimedia Environments at MERL.” IEEE
Multimedia, Vol 2, No. 4, 77-82.

[Barrus et al. 1996] Barrus, W., J., Waters, C.,
R. and Anderson, B., D., 1996. ”Locals and
Beacons: Efficient and Precise Support For
Large Multi-User Virtual Environments.” Proc.
of IEEE Virtual Reality Annual Int. Symp.
(VRAIS-96).

[Greenhalgh and Benford 1995] Greenhalgh, C. and
Benford, S., 1995. ”MASSIVE: A Collabora-
tive Virtual Environment for Teleconferencing.”
ACM Transations on Computer-Human Inter-
action, Vol. 2, No. 3, 239-261.

[Hagsand 1998] Hagsand, O., 1996. ”Interactive
Multiuser VEs in the DIVE System.” IEEE
Multimedia, Vol. 3, No. 1, 30-39.

[Okada et al. 2000] Okada, Y., Itoh, E. and Hi-
rokawa, S., 2000. ”IntelligentBox: Its Aspects as
a Rapid Construction System for Interactive 3D
Games.” Proc. of First International Conference
on Intelligent Games and Simulation (GAME-
ON2000), SCS Publication, 22-26.

[Okada and Tanaka 1998] Okada, Y. and Tanaka,
Y., 1998. ”Collaborative Environments in Intel-
ligentBox for Distributed 3D Graphics Applica-
tions.” The Visual Computer (CGS special is-
sue), Vol. 14, No. 4, 140-152.

[Okada and Tanaka 1995] Okada, Y. and Tanaka,
Y., 1995. ”IntelligentBox:A Constructive Visual

Software Development System for Interactive
3D Graphic Applications.” Proc. of Computer
Animation ’95, IEEE Computer Society Press,
114-125.

[Sakamoto et al. 2001] Sakamoto, H., Okada, Y.,
Shimokawa, T. and Ushijima, K., 2001. ”Com-
ponent Based Video Communication Tool for
Collaborative Virtual Environment.” Proc. of
15th International Conference on Information
Networking, 375-380.

[Shaw et al. 1993] Shaw, D., Green, M., Liang, J.
and Sun, Y., 1993. ”Decoupled Simulation in
Virtual Reality with the MR Toolkit.” ACM
Trans. on Information Systems, Vol. 11, No. 3,
287-317.

[Ghee 1995] Ghee, S., 1995. ”dVS – a Distributed
VR System Infrastructure.” In SIGGRAPH ’95
CourseNotes.

[Tanaka 1996] Tanaka, Y., 1996. ”Meme Media and
a World Wide Meme Pool.” Proc. of ACM Mul-
timedia’96, 175-186.

