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1 Introduction

We consider the following two-dimensional (z-z) Oberbeck-Boussinesq equations for the
Rayleigh-Bénard convection:
Uy + Uty +wu, = pp+ PAu,
p. —PRO+PAw,
Uy + w, 0,
O +w+ub, +wb, = A0,

Wt + uw; + ww,

(1)

where (u,w), p and 6 denote the velocity field, pressure and departure of temperature

from a linear profile while P and R denote Prandtl and Rayleigh numbers.

2 A Fixed Point Formulation

We will find the steady-state solutions of (1). We introduce the stream function ¥,
through the definition (u,w) = (=¥,,¥,) so that u, + w, = 0. Cross-differentiating the
equation of motion in (1) in order to eliminate the pressure p and setting © := /PR,

we have
( PA2U = VPRO, —U,AV, + U, AT, in Q
~A® = —\/PRVY,+V9.,0,-V,0, in Q,
U = 0, AU=0 on 99, (2)
O(z,0) = 0, O(x,m)=0,
| ©.(0,2) = 0, ©,(27/a,z)=0.

where we restrict the problem to the rectangular region {0 < z < 27/a, 0 < z < 7}
for given @ > 0 . We also impose periodic boundary conditions (period 27 /a) in the
horizontal direction and stress free boundary conditions (u, = 0) on the surfaces z = 0,
z = 7 for the velocity field, and Dirichlet boundary conditions for the temperature field.

We can represent ¥ and © by the following double Fourier expansions because of the

boundary condition:

U = i i A sin(amz) sin(nz), © = i i By, cos(amz) sin(nz). (3)

m=1n=1 m=0n=1



Setting u := (¥,0), fi(u) := VPRO, — VAT, + U,AV,, fo(u) := —/PRY, +
V.0, — ¥,0, and f(u) := (fi(u), fo(u)), f is a bounded and continuous map from
H?*(Q) x H'(Q2) to L*(Q) x L*(2). Moreover, under the boundary conditions of (2), for all
g1, g2 € L*(Q), A2¥ = g; and —AO = g, have unique solutions (¥, 0) € H*(2) x H?(Q2).
When we denote the solutions by ¥ = (A?)7'g;, © = (—=A)7!gy, an operator:

K= (PYAY™ (—A)™Y) s L2(Q) x LA(Q) — HY(Q) x HY(Q)

is compact because of the compactness of the imbedding H*(2) < H?*(Q2) and H?*(Q) —
H'(Q). Therefore, (2) is rewritten the fixed point equation:

u= Fu (4)

for a compact operator F := K f on H*(Q) x H'(Q2), then we can use Schauder’s fixed

point theorem.

3 Computable Verification Condition

For ,,, = sin(amz)sin(nz), 0,,, := cos(amz)sin(nz), we define approximate sub-
s S(l) 5(2) b
paces on-, on by

M1 N1 . M2 N2 N
S](\}) = {\IJN | \I}N = Z Z Amnqvbmrn }7 S](\?) = {@N | @N = Z Z anemn}
m=1n=1 m=0n=1
Next, for given g1, g, € L*(2), we define projections P](VI)\II and P](VZ)C:) of U = (A% 1g, €
HY(Q), ©=(A)"'g, € H*(Q) by

PAZPPT D) = (g1,00) . W € 5S¢,
(AP(2)@ ()) _ (92,1}5\7)) Vo (2) e S()

where (-, -)z2 means the inner product on L*(Q2). We can show that P](Vl)\il and P](V2)(:)N
coincide with (M, N;)-truncation of ¥ and (Ms, N,)-truncation of © represented by the
expansions in (3). Therefore, we can easily obtain the constructive a priori error estimates:
10— P | s, |16 — P](V)@||H1 and so on.

We define the projection Py by Py := (P](Vl),P](\?)), then the fixed point equation (4)
can be decomposed as the finite dimensional part(projection) and infinite dimensional
part(error) as follows:

Pyu = PyFu,
{ (I — Py)u = (I — Py)Fu,

and we can propose a computer algorithm to construct the set in H*(Q2) x H*(Q2) which

satisfies the assumption of Schauder’s fixed point theorem.



