A Numerical Verification of Bifurcated Solutions for the Heat Convection Problem

Mitsuhiro T. Nakao ${ }^{\dagger}$, Yoshitaka Watanabe ${ }^{\ddagger}$, Nobito Yamamoto* and Takaaki Nishida*
${ }^{\dagger}$ Graduate School of Mathematics, Kyushu University, ${ }^{\ddagger}$ Computer Center, Kyushu University,
*Department of Computer Science and Information Mathematics, The University of Electro-Communications, *Graduate School of Science, Kyoto University

1 Introduction

We consider the following two-dimensional $(x-z)$ Oberbeck-Boussinesq equations for the Rayleigh-Bénard convection:

$$
\left\{\begin{align*}
u_{t}+u u_{x}+\omega u_{z} & =p_{x}+\mathcal{P} \Delta u \tag{1}\\
\omega_{t}+u \omega_{x}+\omega \omega_{z} & =p_{z}-\mathcal{P} \mathcal{R} \theta+\mathcal{P} \Delta \omega \\
u_{x}+\omega_{z} & =0 \\
\theta_{t}+\omega+u \theta_{x}+\omega \theta_{z} & =\Delta \theta
\end{align*}\right.
$$

where $(u, \omega), p$ and θ denote the velocity field, pressure and departure of temperature from a linear profile while \mathcal{P} and \mathcal{R} denote Prandtl and Rayleigh numbers.

2 A Fixed Point Formulation

We will find the steady-state solutions of (1). We introduce the stream function Ψ, through the definition $(u, \omega)=\left(-\Psi_{z}, \Psi_{x}\right)$ so that $u_{x}+\omega_{z}=0$. Cross-differentiating the equation of motion in (1) in order to eliminate the pressure p and setting $\Theta:=\sqrt{\mathcal{P} \mathcal{R}} \theta$, we have

$$
\left\{\begin{array}{rlrl}
\mathcal{P} \Delta^{2} \Psi & =\sqrt{\mathcal{P} \mathcal{R}} \Theta_{x}-\Psi_{z} \Delta \Psi_{x}+\Psi_{x} \Delta \Psi_{z} & \text { in } \quad \Omega \tag{2}\\
-\Delta \Theta & =-\sqrt{\mathcal{P} \mathcal{R}} \Psi_{x}+\Psi_{z} \Theta_{x}-\Psi_{x} \Theta_{z} & \text { in } \Omega \\
\Psi & =0, \quad \Delta \Psi=0 & & \text { on } \quad \partial \Omega \\
\Theta(x, 0) & =0, \quad \Theta(x, \pi)=0 & & \\
\Theta_{x}(0, z) & =0, \quad \Theta_{x}(2 \pi / a, z)=0 . & &
\end{array}\right.
$$

where we restrict the problem to the rectangular region $\{0<x<2 \pi / a, 0<z<\pi\}$ for given $a>0$. We also impose periodic boundary conditions (period $2 \pi / a$) in the horizontal direction and stress free boundary conditions $\left(u_{z}=0\right)$ on the surfaces $z=0$, $z=\pi$ for the velocity field, and Dirichlet boundary conditions for the temperature field.

We can represent Ψ and Θ by the following double Fourier expansions because of the boundary condition:

$$
\begin{equation*}
\Psi=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin (a m x) \sin (n z), \quad \Theta=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} B_{m n} \cos (a m x) \sin (n z) . \tag{3}
\end{equation*}
$$

Setting $u:=(\Psi, \Theta), f_{1}(u):=\sqrt{\mathcal{P} \mathcal{R}} \Theta_{x}-\Psi_{z} \Delta \Psi_{x}+\Psi_{x} \Delta \Psi_{z}, f_{2}(u):=-\sqrt{\mathcal{P} \mathcal{R}} \Psi_{x}+$ $\Psi_{z} \Theta_{x}-\Psi_{x} \Theta_{z}$ and $f(u):=\left(f_{1}(u), f_{2}(u)\right), f$ is a bounded and continuous map from $H^{3}(\Omega) \times H^{1}(\Omega)$ to $L^{2}(\Omega) \times L^{2}(\Omega)$. Moreover, under the boundary conditions of (2), for all $g_{1}, g_{2} \in L^{2}(\Omega), \Delta^{2} \bar{\Psi}=g_{1}$ and $-\Delta \bar{\Theta}=g_{2}$ have unique solutions $(\bar{\Psi}, \bar{\Theta}) \in H^{4}(\Omega) \times H^{2}(\Omega)$. When we denote the solutions by $\bar{\Psi}=\left(\Delta^{2}\right)^{-1} g_{1}, \bar{\Theta}=(-\Delta)^{-1} g_{2}$, an operator:

$$
K:=\left(\mathcal{P}^{-1}\left(\Delta^{2}\right)^{-1},(-\Delta)^{-1}\right): L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow H^{3}(\Omega) \times H^{1}(\Omega)
$$

is compact because of the compactness of the imbedding $H^{4}(\Omega) \hookrightarrow H^{3}(\Omega)$ and $H^{2}(\Omega) \hookrightarrow$ $H^{1}(\Omega)$. Therefore, (2) is rewritten the fixed point equation:

$$
\begin{equation*}
u=F u \tag{4}
\end{equation*}
$$

for a compact operator $F:=K f$ on $H^{3}(\Omega) \times H^{1}(\Omega)$, then we can use Schauder's fixed point theorem.

3 Computable Verification Condition

For $\psi_{m n}:=\sin (a m x) \sin (n z), \theta_{m n}:=\cos (a m x) \sin (n z)$, we define approximate subspaces $S_{N}^{(1)}, S_{N}^{(2)}$ by

$$
S_{N}^{(1)}:=\left\{\Psi_{N} \mid \Psi_{N}=\sum_{m=1}^{M_{1}} \sum_{n=1}^{N_{1}} \hat{A}_{m n} \psi_{m n},\right\}, \quad S_{N}^{(2)}:=\left\{\Theta_{N} \mid \Theta_{N}=\sum_{m=0}^{M_{2}} \sum_{n=1}^{N_{2}} \hat{B}_{m n} \theta_{m n}\right\} .
$$

Next, for given $g_{1}, g_{2} \in L^{2}(\Omega)$, we define projections $P_{N}^{(1)} \bar{\Psi}$ and $P_{N}^{(2)} \bar{\Theta}$ of $\bar{\Psi}=\left(\Delta^{2}\right)^{-1} g_{1} \in$ $H^{4}(\Omega), \quad \bar{\Theta}=(\Delta)^{-1} g_{2} \in H^{2}(\Omega)$ by

$$
\left\{\begin{array}{rll}
\mathcal{P}\left(\Delta^{2} P_{N}^{(1)} \bar{\Psi}, v_{N}^{(1)}\right)_{L^{2}} & =\left(g_{1}, v_{N}^{(1)}\right)_{L^{2}} & \forall v_{N}^{(1)} \in S_{N}^{(1)}, \\
-\left(\Delta P_{N}^{(2)} \bar{\Theta}, v_{N}^{(2)}\right)_{L^{2}} & =\left(g_{2}, v_{N}^{(2)}\right)_{L^{2}} & \forall v_{N}^{(2)} \in S_{N}^{(2)},
\end{array}\right.
$$

where $(\cdot, \cdot)_{L^{2}}$ means the inner product on $L^{2}(\Omega)$. We can show that $P_{N}^{(1)} \bar{\Psi}$ and $P_{N}^{(2)} \bar{\Theta}_{N}$ coincide with $\left(M_{1}, N_{1}\right)$-truncation of $\bar{\Psi}$ and $\left(M_{2}, N_{2}\right)$-truncation of $\bar{\Theta}$ represented by the expansions in (3). Therefore, we can easily obtain the constructive a priori error estimates: $\left\|\bar{\Psi}-P_{N}^{(1)} \bar{\Psi}\right\|_{H^{3}},\left\|\bar{\Theta}-P_{N}^{(2)} \bar{\Theta}\right\|_{H^{1}}$, and so on.

We define the projection P_{N} by $P_{N}:=\left(P_{N}^{(1)}, P_{N}^{(2)}\right)$, then the fixed point equation (4) can be decomposed as the finite dimensional part(projection) and infinite dimensional part(error) as follows:

$$
\left\{\begin{aligned}
P_{N} u & =P_{N} F u \\
\left(I-P_{N}\right) u & =\left(I-P_{N}\right) F u
\end{aligned}\right.
$$

and we can propose a computer algorithm to construct the set in $H^{3}(\Omega) \times H^{1}(\Omega)$ which satisfies the assumption of Schauder's fixed point theorem.

