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1 Introduction

We consider the following two-dimensional (x-z) Oberbeck-Boussinesq equations for the

Rayleigh-B�enard convection:8>>>>><
>>>>>:

ut + uux + !uz = px + P�u;
!t + u!x + !!z = pz �PR � + P�!;

ux + !z = 0;

�t + ! + u�x + !�z = ��;

(1)

where (u; !), p and � denote the velocity �eld, pressure and departure of temperature

from a linear pro�le while P and R denote Prandtl and Rayleigh numbers.

2 A Fixed Point Formulation

We will �nd the steady-state solutions of (1). We introduce the stream function 	,

through the de�nition (u; !) = (�	z;	x) so that ux + !z = 0. Cross-di�erentiating the

equation of motion in (1) in order to eliminate the pressure p and setting � :=
p
PR�,

we have 8>>>>>>>><
>>>>>>>>:

P�2	 =
p
PR�x �	z�	x +	x�	z in 
;

��� = �
p
PR	x +	z�x �	x�z in 
;

	 = 0; �	 = 0 on @
;

�(x; 0) = 0; �(x; �) = 0;

�x(0; z) = 0; �x(2�=a; z) = 0:

(2)

where we restrict the problem to the rectangular region f0 < x < 2�=a; 0 < z < �g
for given a > 0 . We also impose periodic boundary conditions (period 2�=a) in the

horizontal direction and stress free boundary conditions (uz = 0) on the surfaces z = 0,

z = � for the velocity �eld, and Dirichlet boundary conditions for the temperature �eld.

We can represent 	 and � by the following double Fourier expansions because of the

boundary condition:

	 =
1X
m=1

1X
n=1

Amn sin(amx) sin(nz); � =
1X
m=0

1X
n=1

Bmn cos(amx) sin(nz): (3)



Setting u := (	;�), f1(u) :=
p
PR�x � 	z�	x + 	x�	z, f2(u) := �

p
PR	x +

	z�x � 	x�z and f(u) := (f1(u); f2(u)), f is a bounded and continuous map from

H
3(
)�H1(
) to L2(
)�L2(
). Moreover, under the boundary conditions of (2), for all

g1, g2 2 L2(
), �2 �	 = g1 and ���� = g2 have unique solutions ( �	; ��) 2 H4(
)�H2(
).

When we denote the solutions by �	 = (�2)�1g1, �� = (��)�1g2, an operator:

K := (P�1(�2)�1; (��)�1) : L2(
)� L
2(
)! H

3(
)�H
1(
)

is compact because of the compactness of the imbedding H4(
) ,! H
3(
) and H2(
) ,!

H
1(
). Therefore, (2) is rewritten the �xed point equation:

u = Fu (4)

for a compact operator F := Kf on H3(
) � H
1(
), then we can use Schauder's �xed

point theorem.

3 Computable Veri�cation Condition

For  mn := sin(amx) sin(nz), �mn := cos(amx) sin(nz), we de�ne approximate sub-

spaces S
(1)
N
, S

(2)
N

by

S
(1)
N

:= f	N j 	N =
M1X
m=1

N1X
n=1

Âmn mn; g; S
(2)
N

:= f�N j �N =
M2X
m=0

N2X
n=1

B̂mn�mng:

Next, for given g1; g2 2 L2(
), we de�ne projections P
(1)
N

�	 and P
(2)
N

�� of �	 = (�2)�1g1 2
H

4(
); �� = (�)�1g2 2 H2(
) by

8><
>:
P(�2

P
(1)
N

�	; v
(1)
N
)
L
2 = (g1; v

(1)
N
)
L
2 8v(1)

N
2 S(1)

N
;

�(�P (2)
N

��; v
(2)
N
)
L
2 = (g2; v

(2)
N
)
L
2 8v(2)

N
2 S(2)

N
;

where ( �; �)
L
2 means the inner product on L2(
). We can show that P

(1)
N

�	 and P
(2)
N

��N

coincide with (M1; N1)-truncation of �	 and (M2; N2)-truncation of �� represented by the

expansions in (3). Therefore, we can easily obtain the constructive a priori error estimates:

k�	� P
(1)
N

�	k
H

3 , k��� P
(2)
N

��k
H

1, and so on.

We de�ne the projection PN by PN := (P
(1)
N
; P

(2)
N
), then the �xed point equation (4)

can be decomposed as the �nite dimensional part(projection) and in�nite dimensional

part(error) as follows: (
PNu = PNFu;

(I � PN)u = (I � PN)Fu;

and we can propose a computer algorithm to construct the set in H3(
)�H
1(
) which

satis�es the assumption of Schauder's �xed point theorem.


