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We first summarize the general concept of our verification method of solutions for elliptic
equations. Next, as an application of our method, a survey and future works on
the numerical verification method of solutions for heat convection problems known as
Rayleigh–Bénard problem are described. We will give a method to verify the existence
of bifurcating solutions of the two-dimensional problem and the bifurcation point itself.
Finally, an extension to the three-dimensional case and future works will be described.
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1. Summary of the verification method

In this section, we will describe the basic concept of our verification method.
The verification principle of this method was first originated in 1988 by one of
the authors [15], and then several improvements have been done up to now. This
method consists of the projection and the error estimates by the effective use of the
compactness property of concerning operator, and it can be represented as rather
generalized form in the below.

Let X, X̂ and Y denote the Hilbert spaces with compact imbedding X̂ ↪→ X,
and let a nonlinear operator f : X → Y be continuous, Fréchet differentiable and
also maps a bounded set in X into a bounded set in Y . Further, let L be a linear
elliptic differential operator from X̂ into Y .

Then, we consider the following nonlinear problem:

Lu = f(u) (1)

under some suitable boundary conditions.
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Typical examples of the problem (1) are

{
−Δu = f(x, u,∇u), x ∈ Ω ,

u = 0, x ∈ ∂Ω ,
(2)

or fourth order problem such as

⎧⎪⎨
⎪⎩

Δ2u = f(x, u,∇u,Δu), x ∈ Ω ,

u =
∂u

∂n
= 0, x ∈ ∂Ω ,

(3)

where Ω is a bounded convex domain in R
n (n = 1, 2, 3) with piecewise smooth

boundary ∂Ω .
Now, we also assume that the linear problem of eq. (1):

Lv = g (4)

has a unique solution v ∈ X̂ for each g ∈ Y . Therefore, when we denote the solution
of (4) by v ≡ Ag, the map A : Y → X is compact, and the nonlinear map

Fu := Af(u)

is also a compact map on X, and we get the following fixed-point equation of the
compact operator F corresponding with eq. (1):

u = Fu. (5)

In the case of the problem (2), we can choose, for example, X = H1
0 (Ω), X̂ =

H2(Ω) ∩ H1
0 (Ω) and Y = L2(Ω). Thus, if we find a nonempty, bounded, convex

and closed subset U in X satisfying

FU = {Fu | u ∈ U} ⊂ U,

then Schauder’s fixed-point theorem asserts that there exists an element u ∈ FU
such that u= Fu. We call such a set U expected to be FU ⊂ U as a candidate set.

Next we will describe how to construct the candidate set in computer. In
our verification method, the projection into a finite dimensional subspace and the
constructive error estimates of the projection play an important and essential role.
Let Xh be an appropriate finite dimensional subspace of X dependent on the pa-
rameter h. For example, Xh is taken to be a finite element subspace with mesh
size h. Now, let Ph : X → Xh denote an orthogonal projection and we suppose the
following approximation property of Ph:

‖v − Phv‖X ≤ C(h)‖Lv‖Y , ∀v ∈ X̂, (6)
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where C(h) > 0 is a positive constant which is numerically determined with the
property that C(h) → 0 as h→ 0. Note that the orthogonality of Ph is not neces-
sary, but the estimates (6) is indispensable in our argument. And also notice that
the compactness of the imbedding X̂ ↪→ X is essential in getting the estimates (6).
This assumption (6) holds for many finite element subspaces [17] or subspaces con-
stituted by finite Fourier series [27] with adequate order for h. For example, in the
case of the problem (2), when we define Ph as the usual H1

0 -projection, it can be
taken as C(h) = h/π and h/(2π) for bilinear and biquadratic element, respectively,
for the rectangular mesh on the square domain [16]. And C(h) = 0.493h for the
linear and uniform triangular mesh of the convex polygonal domain [9].

Since Xh is the closed subspace of X, each element of X can be uniquely
represented as the direct sum of the element of Xh and X∗. Here X∗ stands for
the orthogonal complement subspace of Xh in X. Then, the fixed-point equation
u = Fu inX can also be uniquely decomposed as the finite dimensional (projection)
part and the infinite dimensional (error) part such that

{
Phu = PhFu,

(I − Ph)u = (I − Ph)Fu.
(7)

Next in order to obtain a solution satisfying eqs. (7), we fix an approximate solution
uh ∈ Xh of eq. (1) and introduce the Newton-like method. We define the nonlinear
operator Nh : X → Xh by

Nhu := Phu− [I − PhF
′[uh]]−1

h Ph(u− Fu),

where F ′[uh] means the Fréchet derivative of F at uh and [I−PhF
′[uh]]−1

h denotes
the inverse on Xh of the restriction operator Ph(I − PhF

′[uh])|Xh
. Note that the

existence of the inverse [I−PhF
′[uh]]−1

h is equivalent to the invertibility of a corre-
sponding matrix which is able to be numerically checked in the actual verification
process. According to the fact that Phu = PhFu and Phu = Nhu are equivalent,
defining the operator T on X by

Tu := Nhu+ (I − Ph)Fu, (8)

the fixed-point problem u = Tu is also equivalent to u = Fu. Therefore since the
operator T on X is compact, Schauder’s fixed-point theorem asserts that if for a
nonempty, bounded, convex and closed set U ⊂ X,

TU = {Tu | u ∈ U} ⊂ U,

holds, then there exists a fixed-point of T in U . When the approximate solution
uh ∈ Xh is sufficiently good, the finite dimensional part of (8), Nhu, will be possibly
contractive near uh by the property of the Newton-like operator. On the other hand,
the infinite dimensional part of T , i.e., (I −Ph)Fu, is expected to be a contraction
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map when the parameter h of Xh are taken to be sufficiently small because of the
approximation property (6).

We now consider the way to determine a candidate set U . If it is chosen such as

U := uh + Uh + U∗, Uh ⊂ Xh, U∗ ⊂ X∗, (9)

then the verification condition TU ⊂ U can be written by

{
NhU − uh ⊂ Uh,

(I − Ph)FU ⊂ U∗.
(10)

Depending on the problem, there are several choices on Uh and U∗. Usually, the
set Uh is taken to be a set of linear combinations of base functions {φ}N

j=1 of Xh

with interval coefficients such that

Uh =
N∑

j=1

[Aj , Aj ]φj ,

where N := dimXh and U∗ a ball with radius α > 0 of the form

U∗ = {v∗ ∈ X∗ | ‖v∗‖X ≤ α}.

Then, for a candidate set U , the former condition in (10) is validated by algebraic
procedures, for example, solving a linear system of equation, interval Cholesky
decomposition, and computation of the largest (or smallest) singular value of a
matrix. Particularly, the interval enclosure of solutions for the linear system of
equations with interval right-hand side plays an essential role in the verification
for the former half of the condition (10). There are some useful algorithms with
result verification to estimate rigorous bound for these problems [25]. Of course,
prior to getting algebraic formulation, we need some additional computations on
the function value evaluation or norm estimations and so on. On the other hand,
(I−Ph)FU cannot be estimated by any finite procedures but the latter part of (10)
can be confirmed by comparing two nonnegative real numbers which correspond to
the radii of balls such that

C(h) sup
u∈U

‖f(u)‖Y ≤ α

by using the property of the error estimates (6). We also need some interval-like
approaches to evaluate the supremum in the left-hand side of the above.

In the actual computation, we use the simple iterative acceleration method
which is called “ε-inflation” [26].

In addition to the condition TU ⊂ U , if there exists k < 1 such that

‖Tu1 − Tu2‖ ≤ k‖u1 − u2‖, ∀u1, u2 ∈ U (11)



Numerical Verification for Elliptic Equations and Its Application 447

for a norm ‖ · ‖ of X, then the fixed-point is unique within the set U by the
Banach fixed-point theorem. Based on our verification principle and the mean
value theorem, we can extend a procedure to derive sufficient condition for verify-
ing not only the existence but also the local uniqueness of solutions to fixed-point
equation u = Fu [29, 28].

In the following sections, as an application of our method, we will give a survey
on the numerical verification of solutions for heat convection problems known as
Rayleigh–Bénard problem with some numerical examples.

2. Rayleigh–Bénard problem

In the end of nineteenth century, Bénard observed the establishment of a regu-
lar, steady pattern of flow cells in a thin horizontal layer of molten spermaceti with
a free upper surface heated from below [1]. The principal facts are: a certain critical
adverse temperature gradient must be exceeded before instability can set in; and
the motions which ensure on surpassing the critical temperature gradient have a
stationary cellular character [2]. His experiments are regarded as the starting point
for the formation of contemporary knowledge on convection as the manifestation
of an important class of hydrodynamic instabilities [4].

The theoretical foundation were laid by Load Rayleigh [24]. He considered a
plane horizontal layer (0≤ z≤ h) of an incompressible viscous fluid heated from be-
low as shown in Fig. 1. At the lower boundary: z= 0 the layer of fluid is maintained
at temperature T + δT and the temperature of the upper boundary (z = h) is T .

Fig. 1. Model of fluid layer.

According to the Oberbeck–Boussinesq approximations [2, 4], the equations
governing convection in a layer are described as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
+ (u · ∇)u = − 1

ρ0
(∇p+ gρez) + νΔu,

div u = 0,
∂θ

∂t
+ (u · ∇)θ = κΔθ.

(12)

In the above system (12), u = (u, v, w) is the velocity vector field in the respective
direction (x, y, z); p the pressure field; θ the temperature; ρ the fluid density; ρ0

the density at temperature T + δT ; ν the kinematic viscosity; g the gravitational
acceleration; ez = (0, 0, 1) and κ is the coefficient of thermal diffusivity.
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The Oberbeck–Boussinesq approximation also requires that the fluid density is
to be independent of pressure and depends linearly on the temperature θ, namely,
ρ can be represented by

ρ− ρ0 = −ρ0α(θ − T − δT ),

where α is the coefficient of thermal expansion. Therefore, the Oberbeck–Boussinesq
equations (12) have a stationary solution

u∗ = 0, θ∗ = T + δT − δT

h
z, p∗ = p0 − gρ0

(
z +

αδT

2h
z2

)
(13)

representing the purely heat conducting state, where p0 means a constant reference
pressure.

Let us consider the perturbation from this conduction solution (13). By setting

û = (û, v̂, ŵ) := u, θ̂ := θ∗ − θ, p̂ := p∗ − p,

the perturbed equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂û

∂t
+ (û · ∇)û =

1
ρ0

∇p̂− gαθ̂ez + νΔû,

div û = 0,

∂θ̂

∂t
+
δT ŵ

h
+ (û · ∇)θ̂ = κΔθ̂

(14)

are obtained. Moreover, transforming to dimensionless variables

t→ t/κ, u → û/κ, θ → θ̂h/δT , p→ p̂/(ρ0κ
2)

of eqs. (14), the dimensionless equations
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
+ (u · ∇)u = ∇p− PRθez + PΔu,

div u = 0,
∂θ

∂t
+ w + (u · ∇)θ = Δθ

(15)

are led, where

R :=
δTαg

κνh

is the Rayleigh number and

P :=
ν

κ

is the Prandtl number. Note that the Rayleigh number is sometimes defined by
R = (δTαgh3)/(κν) when the dimensionless equations are reduced to the domain of
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0 ≤ z ≤ 1. In the perturbed Oberbeck–Boussinesq equations (15), p and θ represent
the perturbation from the equilibrium state.

Rayleigh considered the linearized stability of eqs. (15) for both the upper and
lower boundaries are taken to be stress-free, and showed that for small R the fluid
conducts heat diffusively, and instability must set in when R exceeds a certain
critical value RC ; and that when R just exceeds RC , a a stationary pattern of
motions (Rayleigh–Bénard convection) must come to prevail [24].

Although a large number of studies have been made on the Rayleigh–Bénard
convection [4, 12], theoretical results about the Rayleigh–Bénard convection are
very few. It has been shown by Joseph [6] that eqs. (15) has a unique trivial solution
for R < RC . Iudovich [5] and Rabinowitz [23] proved that, for each R slightly
exceeding the critical Rayleigh number RC , the equations (15) has at least two
nontrivial steady-state solutions. The stability analysis of the bifurcated solution
in a small neighbourhood of the bifurcation points is considered by Kagei and
Wahl [7].

In this paper, we give an overview on the results of our computer assisted
proofs for the Rayleigh–Bénard convection problem. First, in the following section,
based on the basic principle mentioned in the Section 1, we will describe the formu-
lation of the numerical verification method for the existence of the two-dimensional
steady-state solutions and give some verified numerical examples. Next, in the Sec-
tion 4, we will give a method to verify the bifurcation point itself, which should
be an important information to clarify the global bifurcation structure, and show
a numerical example. Further, in the Section 5, we will extend our verification
method to the three-dimensional case for which we could no longer apply the for-
mulation in two-dimensional cases. Finally, we will give some concluding remarks
in the Section 6.

All numerical results discussed take into account of the effects of rounding
errors in the floating point computations. Therefore, our results are considered as
the mathematically rigorous proof.

3. Verification of two-dimensional non-trivial solutions

We now consider the two-dimensional (x-z) Rayleigh–Bénard heat convection
model and describe on, based upon the numerical verification method in the Sec-
tion 1, the fundamental formulation to prove the existence of the steady-state solu-
tions. Then, since all variations with respect to y-direction are assumed to vanish,
the stationary equation of the Oberbeck–Boussinesq approximations (15) are newly
written as, for u = (u,w),

⎧⎪⎨
⎪⎩
−PΔu + (u · ∇)u = ∇p− PRθez,

div u = 0,

−Δθ + (u · ∇)θ + w = 0.

(16)
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We also assume that all fluid motion is confined to the rectangular region

Ω := {0 < x < 2π/a, 0 < z < π},

where the given parameter a > 0 is called as a wave number which determines the
aspect ratio of the rectangular domain. Let us impose periodic boundary condition
(period 2π/a) in the horizontal direction, stress-free boundary conditions (uz =
w = 0) for the velocity field and Dirichlet boundary conditions (θ = 0) for the
temperature field on the surfaces z = 0, π, respectively. Furthermore, we assume
the following evenness and oddness conditions [3]:

u(x, z) = −u(−x, z), w(x, z) = w(−x, z), θ(x, z) = θ(−x, z).

We now use the stream function φ satisfying

u = curlφ,

namely,

u = −φz, w = φx

so that ux + wz = 0. Here, ∗τ := ∂/∂τ (τ = x, z). By some simple calculations
with setting ξ :=

√
PRθ, (16) is rewritten as

{
PΔ2φ =

√
PRξx − φzΔφx + φxΔφz,

−Δξ = −
√
PRφx + φzξx − φxξz.

(17)

In order to apply the argument in the Section 1, we formulate the problem
concerned as a fixed-point equation of a compact map on the appropriate function
space. From the boundary conditions, the functions φ and ξ are supposed to be
represented as the following double Fourier series:

φ =
∞∑

m=1

∞∑
n=1

Amn sin(amx) sin(nz), ξ =
∞∑

m=0

∞∑
n=1

Bmn cos(amx) sin(nz). (18)

We now define the following function spaces for integers k ≥ 0:

Xk :=

{ ∞∑
m=1

∞∑
n=1

Amn sin(amx)sin(nz)

∣∣∣∣∣Amn ∈R,

∞∑
m=1

∞∑
n=1

((am)2k+n2k)A2
mn<∞

}
,

Y k :=

{ ∞∑
m=0

∞∑
n=1

Bmncos(amx)sin(nz)

∣∣∣∣∣Bmn ∈R,

∞∑
m=0

∞∑
n=1

((am)2k+n2k)B2
mn<∞

}
,

which are considered as closed subspaces of usual k-th order Sobolev space Hk(Ω).
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In order to get the enclosure of the exact solutions for the problem (17), we
need some appropriate finite dimensional subspaces. For M1, N1, N2 ≥ 1 and M2 ≥
0, we set N := (M1, N1,M2, N2) and define the finite dimensional approximate
subspaces by

S
(1)
N :=

{
φN =

M1∑
m=1

N1∑
n=1

Âmn sin(amx) sin(nz)

∣∣∣∣∣ Âmn ∈ R

}
,

S
(2)
N :=

{
ξN =

M2∑
m=0

N2∑
n=1

B̂mn cos(amx) sin(nz)

∣∣∣∣∣ B̂mn ∈ R

}
,

SN := S
(1)
N × S

(2)
N .

Let (φ̂N , ξ̂N ) ∈ SN be an appropriate approximate solution of eqs. (17), and set

f1(φ, ξ) :=
√
PRξx − φzΔφx + φxΔφz,

f2(φ, ξ) := −
√
PRφx + φzξx − φxξz,

where

φ = φ̂N + u(1), ξ = ξ̂N + u(2).

Then the problem (17) is rewritten as a system of equations with respect to
(u(1), u(2)) ∈ X4 × Y 2 satisfying

{
PΔ2u(1) = f1(φ̂N + u(1), ξ̂N + u(2)) − PΔ2φ̂N ,

−Δu(2) = f2(φ̂N + u(1), ξ̂N + u(2)) + Δξ̂N ,
(19)

which is so-called a residual form of the original equation. Now, under the following
correspondences with the function spaces in the Section 1,

X3 × Y 1 ∼ X, X4 × Y 2 ∼ X̂, X0 × Y 0 ∼ Y

we define

u := (u(1), u(2)),

f(u) := (f1(φ̂N + u(1), ξ̂N + u(2)) − PΔ2φ̂N , f2(φ̂N + u(1), ξ̂N + u(2)) + Δξ̂N ),

L := (PΔ2,−Δ).

Then the compact nonlinear operator F on X3 × Y 1 is defined as in the Sec-
tion 1. Thus it is readily seen that the general arguments for problem (1) can
also be applied to the present case (17). That is, for example, the projection
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Ph ≡
(
P

(1)
N , P

(2)
N

)
from X3 × Y 1 to SN is defined by

⎧⎨
⎩
(
Δ
(
P

(1)
N φ− φ

)
,Δv(1)

N

)
L2 = 0 ∀v(1)

N ∈ S
(1)
N ,(

∇
(
P

(2)
N ξ − ξ

)
,∇v(2)

N

)
L2 = 0 ∀v(2)

N ∈ S
(2)
N ,

(20)

and the constructive error estimates of the projections P (1)
N and P

(2)
N are deter-

mined [27] by ∥∥ψ − P
(1)
N ψ

∥∥
H3 ≤ C1‖Δ2ψ‖L2 ,∥∥θ − P

(2)
N θ

∥∥
H1 ≤ C2‖Δθ‖L2

for any (ψ, θ) ∈ X4 × Y 2, where

C1 = max

{(
4∑

ν=1

1
(a2 + (N1 + 1)2)ν

)1/2

,

(
4∑

ν=1

1
(a2(M1 + 1)2 + 1)ν

)1/2}
,

C2 = max
{

(1 + (N2 + 1)2)1/2

(N2 + 1)2
,
(2 + a2(M2 + 1)2)1/2

a2(M2 + 1)2 + 1

}
.

Another kind of error estimates can also be obtained and more detailed verification
algorithm and computational procedures to construct the candidate set in X3×Y 1

are shown in references [27, 19].
We have verified various kinds of bifurcating solutions corresponding to dif-

ferent Rayleigh numbers as shown in Fig. 2, where we fixed the wave number as
a = 1/

√
2 and the Prandtl number P = 10. The vertical axis stands for the ab-

solute value of the coefficient of the approximate solution for ξ. And each dot in
Fig. 2 means that the existence of an exact solution corresponding to the point

Fig. 2. Verified points on the bifurcation diagram.
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was numerically verified. This result proves that, for example, at least four kinds
of different bifurcating curves actually exist for certain long period, which could
not be proved by any theoretical consideration up to the present. Therefore, it is a
significant result in the sense of finding a new and mathematically rigorous result
in the concerning research fields.

4. Existence proof of a bifurcation point

By considering Fig. 2, it seems that there exists a secondary bifurcation point
around R ≈ 32. Thus we studied the detailed structure of the approximate solu-
tions around those points. Then it was clarified that, for approximate solutions of
the form

φN =
M1∑

m=1

N1∑
n=1

Amn sin(amx) sin(nz), ξN =
M2∑

m=0

N2∑
n=1

Bmn cos(amx) sin(nz),

we have following two different kinds of approximate solutions satisfying

Amn = Bmn = 0, m = 1, 3, 5, 7, . . . with R = 32

and

Amn �= 0, Bmn �= 0, m = 1, 3, 5, 7, . . . with R = 33.

Therefore, we expected that a secondary bifurcation should occur on the corre-
sponding branch between 32 ≤ R ≤ 33, and that it must be a symmetry-breaking
bifurcation point.

In the below, by using the similar arguments in [8], we consider the formulation
of a numerical method to verify a bifurcation point itself and present an actually
verified example. In order to obtain the enclosure of the bifurcation point, we define
the “symmetric” operator T : X0 × Y 0 → X0 × Y 0 by

T (φ, ξ) = (T1φ, T2ξ)

= (φ(x+ π/a, z), ξ(x+ π/a, z)),

then Xk and Y k can be decomposed as the symmetric part and anti-symmetric part

Xk = Xk
s ⊕Xk

a , Y k = Y k
s ⊕ Y k

a ,

where

Xk
s = {φ ∈ Xk | T1φ = φ}, Xk

a = {φ ∈ Xk | T1φ = −φ},
Y k

s = {ξ ∈ Y k | T2ξ = ξ}, Y k
a = {ξ ∈ Y k | T2ξ = −ξ}.

Also, we set as Z := X3 × Y 1, and define the operator G := I − F , where I is the
identity map on Z and F is the compact nonlinear operator defined in the previous
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section. Then, it is easily seen that T Gw = GT w holds and Z is also decomposed
as two part

Z = Zs ⊕ Za,

where Zs = {w ∈ Z | T w = w} and Za = {w ∈ Z | T w = −w}.
Next, we define the extended operator G on Zs × Za × R which includes R as

a variable parameter, by

G(w, v,R) :=

⎛
⎝ G(w,R)
DwG[w,R]v
H(v) − 1

⎞
⎠. (21)

Here H is a linear functional on Za defined by for v = (ψ, η)

H(v) := (ψ,ψ0)L2 + (η, η0)L2 ,

where we set ψ0 := 2a/π2 sin(ax) sin(z) and η0 := 2a/π2 cos(ax) sin(z). The basic
principle of the verification for a symmetry-breaking bifurcation point is given by
Kawanago [8] as follows:

Lemma 4.1. (w0,R0) ∈ Zs × R is a symmetry-breaking bifurcation point of
G(w,R) = 0 if
1. Extended system G(w, v,R) = 0 has an isolated solution (w0, v0,R0) ∈ Zs ×

Za × R.
2. DwG[w0,R0]|Zs

: Zs → X0
s × Y 0

s is bijective.

First we have to prove that the extended system G(w, v,R) = 0 has an isolated
solution (w0, v0,R0) ∈ Zs × Za × R by applying our verification method presented
in the Section 1. We observe that a solution [φ, ξ, ψ, η,R] ∈ Zs × Za × R of the
equation G(w, v,R) = 0 is equivalently characterized as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

PΔ2φ−
√
PRξx − J(φ,Δφ) = 0,

−Δξ +
√
PRφx + J(φ, ξ) = 0,

PΔ2ψ −
√
PRηx − J(φ,Δψ) − J(ψ,Δφ) = 0,

−Δη +
√
PRψx + J(φ, η) + J(ψ, ξ) = 0,

H(v) − 1 = 0,

(22)

where J(u,v) :=uxvz−vxuz. We compute an approximate solution [φN, ξN,ψN,ηN,RN ]
of eq. (22) by using a usual Newton-like method in finite dimension. And, as in the
previous section, setting the residual variables by

φ := φN +u(1), ξ := ξN +u(2), ψ := ψN +u(3), η := ηN +u(4), R := RN +u(5),
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we rewrite the equation (22) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PΔ2u(1) =
√

P(RN +u(5))(ξN +u(2))x +J(φN +u(1),Δ(φN +u(1)))−PΔ2φN ,

−Δu(2) =−
√

P(RN +u(5))(φN +u(1))x−J(φN +u(1), ξN +u(2))+ΔξN ,

PΔ2u(3) =
√

P(RN +u(5))(ηN +u(4))x +J(φN +u(1),Δ(ψN +u(3)))

+J(ψN +u(3),Δ(φN +u(1)))−PΔ2ψN ,

−Δu(4) =−
√

P(RN +u(5))(ψN +u(3))x−J(φN +u(1), ηN +u(4))

−J(ψN +u(3), ξN +u(2))+ΔηN ,

u(5) =−(ψN +u(3), ψ0)L2 −(ηN +u(4), η0)L2 +1+u(5).

(23)

Note that the correspondences of function spaces between the present case
and the Section 1 are

Zs × Za × R ∼ X, ((Zs × Za) ∩ (X4 × Y 2)2) × R ∼ X̂, (X0 × Y 0)2 × R ∼ Y.

Therefore, when we define the nonlinear function f(u) of u:=(u(1),u(2),u(3),u(4),u(5))
by the right-hand side of the equation (23), and define the operator

L := (PΔ2,−Δ,PΔ2,−Δ, I),

the fixed-point formulation u = Fu of the compact map on Zs × Za × R can be
obtained. We also easily define the finite dimensional subspaces satisfying

XN
s ⊂ X3

s , Y N
s ⊂ Y 1

s , XN
a ⊂ X3

a , Y N
a ⊂ Y 1

a ,

and the projections

P
(1)
N : X3

s → XN
s , P

(2)
N : Y 1

s → Y N
s , P

(3)
N : X3

a → XN
a , P

(4)
N : Y 1

a → Y N
a ,

as in the previous section. And we obtain the almost same constructive error
estimates for these projections. Thus we can formulate the similar verification
conditions as before.

We actually implemented numerical verification program incorporated with the
some guaranteed computations by using interval arithmetic and proved that there
exists an isolated solution of G(w0, v0,R0) = 0. Then R0 is enclosed the following
very small interval

R0 ∈ 32.04265510708193 + [−2.910, 2.910] × 10−10. (24)

Next, it is necessary to prove the latter condition in Lemma 4.1 by numerically
verifying the invertibility for linearized operator DwG[w0,R0] on Zs. Taking notice
that the operator DwG[w0,R0] is a Fredholm operator with index 0, it suffices to
prove that {

PΔ2ψ −
√

PR0ηx − J(φ0,Δψ) − J(ψ,Δφ0) = 0,

−Δη +
√
PR0ψx + J(φ0, η) + J(ψ, ξ0) = 0

(25)



456 Y. Watanabe and M.T. Nakao

has a unique trivial solution [ψ, η] = [0, 0] in Zs, where [φ0, ξ0] := w0. Here, note
that the system (25) has a set of equations because w0 = [φ0, ξ0] and R0 are only
given by sets of function and parameter as the solutions for the extended system
(22). This difficulty, however, can be effectively overcome by appropriate use of
interval estimates in the actual verification procedures.

We now for u = [ψ, η] in Zs, define

f(u) :=
(√

PR0ηx + J(φ0,Δψ) + J(ψ,Δφ0),−
√

PR0ψx − J(φ0, η) − J(ψ, ξ0)
)
,

and L = (PΔ2,−Δ). Thus, the equation (25) can also be represented as the fixed-
point form u = Fu on Zs, where, in this case, F is a linear compact map on Zs.
The Newton-like operator T on Zs is also well defined and we take a candidate
set U ⊂ Zs including [0, 0]. If TU ⊂ U◦ is satisfied, then, by the linearity of the
operator T , it is assured that [0, 0] ∈ Zs is the only solution of problem (25) (cf. [13]).
Here, U◦ means the interior of U .

Based upon this principle, under the following computing environment which
is same as above enclosing of R0, we actually succeeded to verify the invertibility
of DwG[w0,R0]: Sun ONE Studio 7 Compiler Collection Fortran 95 on Fujitsu
PRIMEPOWER 850 (CPU: SPARC64 V 1.35 GHz, OS: Solaris 8).

Therefore, it was proved that there exists a symmetry-breaking bifurcation
point R0 satisfying (24).

5. Three-dimensional problems

In this section, we consider the verification of solutions for three-dimensional
heat convection problems in which more realistic and interesting bifurcation phe-
nomena are observed numerically in fluid mechanics [21]. Concerning Oberbeck–
Boussinesq equations are the same as (16), but we could no longer apply the
formulation in two-dimensional case by the use of stream functions. Our verifi-
cation technique can also be extended to this case applying the verification method
directly to the original three-dimensional Navier–Stokes equation (16). Modifying
slightly in (16) as p → −p/P and θ → −θ, we consider the following steady-state
problem: ⎧⎪⎪⎨

⎪⎪⎩
1
Pu · ∇u + ∇p = Δu + Rθ∇z,

div u = 0,

(u · ∇)θ = Δθ + w.

(26)

Here, u = (u, v, w). Given positive wave numbers a, b ≤ 1, we assume that all fluid
motions are essentially confined to

Ω =
{

(x, y, z) ∈ R
3

∣∣∣∣ 0 ≤ x ≤ 2π
a
, 0 ≤ y ≤ 2π

b
, 0 ≤ z ≤ π

}
, |Ω | =

4π3

ab
,
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and impose parity conditions on new boundaries as in [21] which lead periodic
boundary conditions in horizontal directions as in the Section 3. From these bound-
ary conditions, the velocity field, the perturbations of temperature and pressure can
be represented by the following Fourier series:

u =
∑
α�=0

[uαφ
α
1 , vαφ

α
2 , wαφ

α
3 ], θ =

∑
α3 �=0

θαφ
α
3 , p =

∑
α�=0

pαφ
α
4 , (27)

where α is the multi-index of non-negative integers in Z
3
0, and (uα, vα, wα, θα, pα)

are coefficients of (u, θ, p) with respect to the base functions φα
i defined by

φα
1 (x, y, z) = Kα sin(aα1x) cos(bα2y) cos(α3z),

φα
2 (x, y, z) = Kα cos(aα1x) sin(bα2y) cos(α3z),

φα
3 (x, y, z) = Kα cos(aα1x) cos(bα2y) sin(α3z),

φα
4 (x, y, z) = Kα cos(aα1x) cos(bα2y) cos(α3z),

where Kα is the normalization factor with respect to the usual L2(Ω) inner product
( · , · )L2 defined by

Kα :=
√

(2 − δ0α1)(2 − δ0α2)(2 − δ0α3)/|Ω |, δij = Kronecker delta on i, j.

Setting Aα ≡
√

(aα1)2 + (bα2)2 + α2
3, Bα ≡

√
(aα1)2 + (bα2)2 and defining indices

subsets by I1 ≡ [1, 0, 1] + Z
3
0 ∪ [0, 1, 1] + Z

3
0, I2 ≡ [1, 1, 0] + Z

3
0, we define the

divergence free orthogonal base functions by

Φα =
[
−aα1α3

AαBα
φα

1 ,−
bα2α3

AαBα
φα

2 ,
Bα

Aα
φα

3

]
, α ∈ I1,

Ψα =
[
bα2

Bα
φα

1 ,−
aα1

Bα
φα

2 , 0
]
, α ∈ I2.

Set I0 = I1 ∪ I2 and then define function spaces V and W with associated usual
H1 norm as follows:

V =

{
u =

∑
α∈I0

{ξαΦα + ηαΨα}
∣∣∣∣∣ ‖Δu‖L2 <∞

}
⊂ H2(Ω)3,

W =

{
θ =

∑
α∈I3

θαφ
α
3

∣∣∣∣∣ ‖Δθ‖L2 <∞
}

⊂ H2(Ω), where I3 ≡ [0, 0, 1] + Z
3
0.

For a fixed number N ≥ 2, we define the finite dimensional subspaces VN and WN

of V and W :

VN ≡ {u ∈ V | ξα = ηα = 0, if |α| ≡ α1 + α2 + α3 > N},
WN ≡ {θ ∈W | θα = 0, if |α| > N},
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respectively. Set X ≡ V ×W and XN ≡ VN ×WN . Define projections PN : V → VN

and QN : W →WN as in previous sections:

(∇(u − PNu),∇v)L2 = 0, ∀v ∈ VN ,

(∇(θ −QNθ),∇ϑ)L2 = 0, ∀ϑ ∈WN ,
(28)

with respect to the inner product ( · , · )L2 on L2(Ω)×L2(Ω) or properly extended
spaces. Due to orthogonal relations of base functions in X, these projections PN

and QN coincide with truncation operators

PNu =
∑

α∈I0,N≡I0∩I,N

{ξαΦα + ηαΨα}, QNθ =
∑

α∈I3,N≡I3∩I,N

θαφ
α
3 ,

where I,N ≡ {α ∈ Z
3
0 | |α| ≤ N}.

Then, we have the following error estimates [10].

Theorem 5.1. For any (u, θ) ∈ X and (PNu, QNθ) ∈ XN in (28), the fol-
lowing holds:

‖u − PNu‖L2 ≤ C2
0

(N + 1)2
‖Δu‖L2 , ‖∇(u − PNu)‖L2 ≤ C0

N + 1
‖Δu‖L2 , (29)

‖θ −QNθ‖L2 ≤ C2
0

(N + 1)2
‖Δθ‖L2 , ‖∇(θ −QNθ)‖L2 ≤ C0

N + 1
‖Δθ‖L2 , (30)

where C0 ≡
√
a−2 + b−2 + 1.

We also obtain the following L∞ error estimates [10].

Corollary 5.1. Under the same assumptions of Theorem 5.1, the following
holds:

‖u − PNu‖∞ ≤ 2C1

√
1
N

− 1
3(N + 1)3

‖Δu‖L2 <
2C1√
N

‖Δu‖L2 , (31)

‖θ −QNθ‖∞ ≤ 2C1

√
1
N

− 1
2(N + 1)2

+
1

6N3
‖Δθ‖L2 <

2C1√
N

‖Δθ‖L2 , (32)

where C1 ≡ C2
0 |Ω |− 1

2 .

The steady state solution of (26) can be written as⎧⎪⎨
⎪⎩
−Δu + ∇p = f(u, θ),

∇ · u = 0,

−Δθ = g(u, θ),

(33)

where the right hand sides of (33) are defined by

f(u, θ) = − 1
P (u · ∇)u + Rθez, g(u, θ) = −(u · ∇)θ + w.
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Now, setting F (u, θ) ≡ (f(u, θ), g(u, θ)), the weak form of (33) is written as

(∇(u, θ),∇(v, ϑ))L2 = (F (u, θ), (v, ϑ))L2 , ∀(v, ϑ) ∈ X.

When the variables u, θ in the right-hand side of (33) are replaced by some known
functions, the first two and the last equations could be considered as the Stokes and
Poisson equations, respectively. In such a case, we call the solution operator S for
(33) with known right-hand side as Stokes operator. Thus (u, θ) = SF (u, θ) means

(∇SF (u, θ),∇(v, ϑ))L2 = (F (u, θ), (v, ϑ))L2 , ∀(v, ϑ) ∈ X. (34)

Note that we always have S−1(u, θ) = (−Δu + ∇p,−Δθ) with an associated pres-
sure p = p(u, θ). Now let (uN , θN ) ∈ XN be an approximate solution of (33), then
we define the approximate pressure pN by

∇pN ≡ fN (uN , θN ) + ΔuN ,

where fN is the truncation up to I,N of the expansion of f . For the solution
(u, θ) of (33) with its associated pressure p, let (ū, θ̄) ≡ (u − uN , θ − θN ) and let
p̄ ≡ p− pN . Then we have the following residual equations:

⎧⎪⎨
⎪⎩
−Δū + ∇p̄ = f(uN + ū, θN + θ̄) + ΔuN −∇pN ,

∇ · ū = 0,

−Δθ̄ = g(uN + ū, θN + θ̄) + ΔθN .

(35)

Set

F̄ (ū, θ̄) ≡ (f(uN + ū, θN + θ̄) + ΔuN −∇pN , g(uN + ū, θN + θ̄) + ΔθN )

≡ (f̄(ū, θ̄), ḡ(ū, θ̄)),

then the Stokes operator S gives us a fixed-point problem from (35):

(ū, θ̄) = SF̄ (ū, θ̄) ≡ K(ū, θ̄). (36)

Since K is a compact operator on X, we can formulate the verification procedure
as in the previous sections.

In [10], we implemented the numerical verification program using the interval
arithmetic by the PROFIL package [11] for gcc language on Linux Intel Pentium 4
(3.8 GHz) machine and we got some fundamental results of verification for several
kinds of bifurcating solutions. Actually, we verified roll, rectangular and hexago-
nal type solutions for a = 1/2

√
2, b =

√
3a and P = 10. In this case, the critical

Rayleigh number RC = 6.75 can also be attained at some special mode as in two-
dimensional case [21]. Figs. 3, 4 and 5 show the shape of roll type, rectangular type
and hexagonal type solutions for R/Rc = 1.1, respectively. Here left is isothermal
lines and right is contour lines of speed with streamlines. Fig. 6 shows the verified
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points on bifurcation diagrams for each type of solutions. For roll type case, we can
effectively use the unknown reduction due to the elimination of one space variable
which comes from the fact that the solutions are independent of that variable. For
other types, we used the property of the basic symmetry of solutions which make
it possible to reduce the size of unknowns.

Fig. 3. Roll type solution for R/Rc = 1.1.

Fig. 4. Rectangular type solution for R/Rc = 1.1.

Fig. 5. Hexagonal type solution for R/Rc = 1.1.
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Fig. 6. Verified points: × for hexagonal, ◦ for rectangular, and ∗ for roll type cases.

6. Conclusion

We presented some computer assisted proofs to enclose the non-trivial solutions
for two and three-dimensional heat convection problems as well as to prove the
existence of a bifurcation point itself. These numerical computations are executed
in mathematically rigorous sense and we actually succeeded to get numerical proofs
of desired properties of the bifurcation structure.

Let us describe our future works. For two-dimensional heat convection prob-
lem, we want to trace non-trivial solution curve continuously with respect to the
Rayleigh number. For three-dimensional case, Nishida et al. [21] suggested that the
rectangular type solution becomes unstable at R/Rc ≈ 1.43 and the mixed type so-
lution bifurcates from it and goes in the hexagonal type solution at R/Rc ≈ 1.845.
We wish this bifurcation diagram will be justified by a computer assisted proof in
the near future.

Remark 6.1. Recently we sometimes use a little bit of modified version of
the original principle of our method as in [20, 18, 14] and so on. But, for the heat
convection problem, in the present case, we have to use very delicate techniques
to get efficient computation in the verification procedures. Such technique seem to
be applicable only for our original method. However, since we have no experience
by the modified methods for verification of this problem, we we could not mention
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about the applicability or effectivity by the infinite dimensional Newton method
such as [18] or by other method, e.g., Plum’s method [22]. It should be one of the
future subjects for us.
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