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The authors and their colleagues have developed numerical verification methods for so-
lutions of second-order elliptic boundary value problems based on the infinite-dimensional
fixed-point theorem using the Newton-like operator with appropriate approximation and con-
structive a priori error estimates for Poisson’s equations. Many verification results show that
the authors’ methods are sufficiently useful when the equation has no first-order derivative.
However, in the case that the equation includes the term of a first-order derivative, there is a
possibility that the verification algorithm does not work even though we adopt a sufficiently ac-
curate approximation subspace. The purpose of this paper is to propose an alternative method
to overcome this difficulty. Numerical examples which confirm the effectiveness of the new
method are presented.
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1. Introduction

Consider the following nonlinear elliptic boundary value problem:

−�u = f (x, u,∇u), x ∈ �,

u = 0, x ∈ ∂�,
(1)

where � is a bounded convex domain in R
n (n = 1, 2, 3) with piecewise smooth bound-

ary ∂� and the map f is assumed to satisfy appropriate conditions described later.
The aim of numerical verification is to verify by computer the existence of the solu-

tion u of (1) around a given approximate solution uh with guaranteed error bounds. The
verification principle was originated by one of the authors [4] and several improvements
have been made up to now. First, problem (1) is rewritten in infinite-dimensional fixed-
point form, and then the equation is decomposed into the finite-dimensional part and the
infinite-dimensional error part. When both the finite and the infinite-dimensional parts
are simultaneously contraction maps under suitable assumptions, an infinite-dimensional
fixed-point theorem implies the existence of the solution in a certain function set (see
[5,6], etc.). For the finite-dimensional part, self-validating Newton-like iterations are
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performed by the computer. On the other hand, for the infinite-dimensional part, suc-
cessive iterations using the a priori error estimates of the projection for the solution of
Poisson’s equations are applied. These two processes are connected with each other at
every iteration step.

Many verification results up to the present show that this procedure is sufficiently
useful if applied to equations having no first-order derivative term [6]. This is based
on a principle of contractiveness, namely, local contraction of the Newton operator for
the finite-dimensional part and the naturally contractive property for the error part from
the degree of approximation when the dimension of the finite-dimensional approximate
subspace increases. However, in the case that f includes a first-order derivative, it was
proved that there exist some cases for which the effect of error estimations no longer
work in the Newton-like iterations, and as a result, the verification could fail even if very
fine approximate subspaces are used.

In this paper, in order to overcome this difficulity, we propose an improvement of
the verification method by using norm estimates instead of solving the interval linear sys-
tem in the Newton-like iterations for the finite-dimensional part. Particularly note that,
in these norm estimations, it is not necessary to bound the inverse operator of linearlized
problems which is needed in another verification approach proposed by Plum [8].

The contents of this paper are as follows. In section 2, we define some function
spaces and notations, and then the fixed-point formulation and the constructive a priori
error estimates of the H 1

0 -projection for Poisson’s equations are described. Next, the
basic verification principle using a Newton-like iteration is considered. The current and
improved computable verification conditions are given in section 3. Numerical examples
which show advantages of the new method are presented in section 4.

2. Fixed-point formulation

For an integer m, let Hm(�) denote the L2-Sobolev space of order m on �. We
define

H 1
0 (�) := {

u ∈ H 1(�) | u = 0, x ∈ ∂�
}

with the inner product (∇u,∇v)L2 and the norm ‖u‖H 1
0 (�) := ‖∇u‖L2(�), where (u, v)L2

implies the L2-inner product on �. The nonlinear operator f : H 1
0 (�) → L2(�) is

supposed to be continuous, Fréchet differentiable on H 1
0 (�) and also map a bounded set

in H 1
0 (�) to a bounded set in L2(�). We rewrite (1) in the following weak form: find

u ∈ H 1
0 (�) such that

(∇u,∇v)L2 = (
f (·, u,∇u), v

)
L2, ∀v ∈ H 1

0 (�). (2)

It is well known [3] that for any ξ ∈ L2(�) Poisson’s equations

−�ψ = ξ, x ∈ �,

ψ = 0, x ∈ ∂�,
(3)
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have a unique solution ψ ∈ H 2(�) ∩ H 1
0 (�) and the estimate

|ψ |H 2(�) � ‖ξ‖L2(�) (4)

holds, where | · |H 2(�) means the semi-norm on H 2(�) defined by

|v|2
H 2(�)

=
n∑

i,j=1

∥∥∥∥ ∂2v

∂xi∂xj

∥∥∥∥
2

L2(�)

.

For ξ ∈ L2(�) let Aξ be the solution of (3), then the operator A : L2(�) → H 1
0 (�)

is compact because of the compactness of the imbedding H 2(�) ↪→ H 1(�) [1]. From
assumptions of f , the nonlinear operator F defined by

F := A ◦ f

is also a compact map on H 1
0 (�). Then the weak form (2) can be rewritten equivalently

as the fixed-point form

u = F(·, u,∇u) (5)

in H 1
0 (�). In the following, for simplicity, we denote f (u) := f (·, u,∇u) and Fu :=

F(·, u,∇u).
Next we introduce a Newton-like method for verification [5]. Let Sh be an approxi-

mate finite-dimensional subspace of H 1
0 (�) dependent on the parameter h. For example,

Sh is taken to be a finite element subspace with mesh size h. Also let Ph : H 1
0 (�) → Sh

denote the H 1
0 -projection defined by, for each element φ ∈ H 1

0 (�),(∇(φ − Phφ),∇v
)
L2 = 0, ∀v ∈ Sh. (6)

Now we suppose the following approximation property of Ph:

‖v − Phv‖H 1
0 (�) � Ch|v|H 2(�), ∀v ∈ H 1

0 (�) ∩ H 2(�), (7)

where C > 0 is a positive constant numerically determined. This assumption holds
for many finite element subspaces of H 1

0 (�) [2,6,7] or function spaces of Fourier series
with finite truncation [13]. Since Sh is the closed subspace of H 1

0 (�), each element of
H 1

0 (�) can be uniquely represented as the direct sum of the elements of Sh and S⊥
h .

Here S⊥
h stands for the orthogonal complement subspace of Sh in H 1

0 (�). Therefore,
the fixed-point equation u = Fu in H 1

0 (�) can also be uniquely decomposed as the
finite-dimensional (projection) part and the infinite-dimensional (error) part of the form

Phu=PhFu,

(I − Ph)u= (I − Ph)Fu.
(8)

In order to obtain a solution satisfying (8), we fix an approximate solution uh ∈ Sh

of (2) and define the nonlinear operator Nh : H 1
0 (�) → Sh by

Nhu := Phu − [
I − PhF

′(uh)
]−1
h

Ph(u − Fu),
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where F ′(uh) means the Fréchet derivative of F at uh and [I − PhF
′(uh)]−1

h denotes
the inverse on Sh of the restriction operator Ph(I − PhF

′(uh))|Sh
. Note that existence of

[I − PhF
′(uh)]−1

h is equivalent to the nonsingularity of a matrix G defined later by (14)
in section 3, which is able to be numerically confirmed in the actual verification process.
Because of the equivalency of Phu = PhFu and Phu = Nhu, defining the operator T on
H 1

0 (�) by

T u := Nhu + (I − Ph)Fu, (9)

two fixed-point problems u = T u and u = Fu are also equivalent. Therefore Schauder’s
fixed-point theorem asserts that if, for a nonempty, bounded, convex and closed set U ⊂
H 1

0 (�),

T U = {T u | u ∈ U } ⊂ U

holds, then there exists a fixed-point of T in U . We call such a set U , expected to be
T U ⊂ U , as a candidate set. If a candidate set U is chosen such as

U := uh + Uh + U∗, Uh ⊂ Sh, U∗ ⊂ S⊥
h , (10)

then the verification condition T U ⊂ U can be written in the form

NhU − uh ⊂ Uh,

(I − Ph)FU ⊂ U∗.
(11)

Note that, from the definition of the operator T , when the approximate solution uh ∈ Sh

is sufficiently good, the finite-dimensional part of T will possibly be contractive. On
the other hand, the magnitude of the infinite-dimensional part of T , i.e., (I − Ph)Fu,
is expected to be small when the parameter h of Sh is sufficiently small because of the
approximation property (7) with (4) of Ph.

3. Verification algorithms

This section is devoted to the construction of the current verification algorithm
and a new computable verification algorithm which generate candidate sets expected to
satisfy condition (11).

3.1. Infinite-dimensional part

The following general criterion of verification for the infinite-dimensional part is
led by the constructive a priori error estimates for Poisson’s equations and the Aubin–
Nitsche trick [4].

Theorem 1. Let the infinite-dimensional part of the candidate set U∗ in (10) be a ball
with radius α > 0 such as

U∗ := {
u∗ ∈ S⊥

h | ‖u∗‖H 1
0 (�) � α, ‖u∗‖L2(�) � Chα

}
. (12)
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For a bounded closed subset Uh ⊂ Sh, if the candidate set U := uh + Uh + U∗ satisfies

Ch sup
u∈U

∥∥f (u)
∥∥

L2(�)
� α,

then the second part of condition (11) is satisfied.

3.2. Finite-dimensional part using interval coefficients

We now briefly describe the existing method to compute the finite-dimensional
part, i.e., the enclosing method for the former part of the left-hand side of (11) for a
candidate set U . Let K := dim Sh and let {φi}1�i�K be a basis of Sh. Also let IT
denote the interval extension for T ∈ {R, R

K}. The set Uh is taken to be a set of linear
combinations of base functions in Sh with interval coefficients such as

Uh :=
K∑

i=1

[
Ai,Ai

]
φi. (13)

Defining the K × K matrix G = (Gij ) by

Gij = (∇φj ,∇φi)L2 − (
f ′(uh)φj , φi

)
L2, (14)

we obtain the following sufficient condition of the first part of (11) [6].

Theorem 2. Assume that the candidate set U ⊂ H 1
0 (�) is defined by (12) and (13) with

(10), and denote an arbitrary element u ∈ U by

u = uh + ûh + u∗, ûh ∈ Uh, u∗ ∈ U∗.

Let d = (di) ∈ IR
K denote the interval enclosure of the set whose ith component

consists of{(
f (u) − f ′(uh)ûh, φi

)
L2 − (∇uh,∇φi)L2 ∈ R | u ∈ U

}
, 1 � i � K. (15)

If, for a K-dimensional interval vector v = (vi) ∈ IR
K enclosing the solution x ⊂ R

K

for the linear equation

Gx = d, (16)

the conditions

vi ⊂ Ai, 1 � i � K, (17)

hold, then the former half of condition (11) is satisfied.

The above interval vector v ∈ IR
K is obtained with guaranteed accuracy by various

kinds of methods, e.g., [9]. Based on theorems 1 and 2, we usually adopt the following
verification algorithm AL-1 using the acceleration method with ε > 0 which is called
“ε-inflation”.



316 M.T. Nakao, Y. Watanabe / Numerical verification for elliptic equations

Verification algorithm AL-1.

• k = 0
Set initial values A

(0)
i ∈ IR (1 � i � K) and α(0) > 0.

• k � 1

1. For a fixed small constant ε > 0 set

Â
(k)
i := (1 + ε)A

(k−1)
i (1 � i � K), α̂(k) := (1 + ε)α(k−1).

2. The kth candidate set U(k) is defined by

U
(k)
h :=

K∑
i=1

Âiφi ⊂ Sh,

U(k)
∗ := {

v∗ ∈ S⊥
h | ‖v∗‖H 1

0 (�) � α̂(k), ‖v∗‖L2(�) � Chα̂(k)
}
,

U(k) := uh + U
(k)
h + U(k)

∗ .

3. Compute values of the kth iteration by

A
(k)
i := vi of (16) in theorem 2,

α(k) := Ch sup
u∈U(k)

∥∥f (u)
∥∥

L2(�)
.

4. If A
(k)
i ⊂ Â

(k)
i (1 � i � K) and α(k) � α̂(k) then stop, and there exists a desired

solution in U(k) ⊂ H 1
0 (�).

5. Set k := k + 1 and return to step 1. If k reaches a maximum iteration number or
some norm of A

(k)
i and α(k) exceed certain criteria then stop, and the verification

fails.

3.3. Some problems in AL-1

A lot of verification results prove that AL-1 is actually effective if f (·) in (1) has
no first-order derivative [6]. However, in the case that there is a first-order term in f ,
the verification algorithm does not always work [5,12]. We now give a simple example.
When f (u) ≡ u′, each element of the set in (15) becomes

−(
uh + uh

′, φi
′)

L2 + (
u∗′, φi

)
L2 . (18)

Here, the first term −(uh + uh
′, φi

′)L2 of (18) could be estimated by a narrow interval
using usual interval arithmetic. On the other hand, the second term (u∗′, φi)L2 would be
estimated as |(u∗′, φi)L2 | � α‖φi‖L2(�), which generally causes an overestimation and
d = (di) ∈ IR

K is defined as the interval enclosing:

di := −(
uh + uh

′, φi
′)

L2 + [−1, 1]α‖φi‖L2(�).
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Table 1
Computed norms for the linear combination with interval coefficients.

δ Linear Fourier Cubic Hermite

‖vh‖2

10−10 9.87 × 10−21 9.91 × 10−19 9.89 × 10−21

10−5 9.87 × 10−11 9.91 × 10−9 9.89 × 10−11

10−4 9.87 × 10−9 9.91 × 10−7 9.89 × 10−9

10−3 9.87 × 10−7 9.91 × 10−5 9.89 × 10−7

10−2 9.87 × 10−5 9.91 × 10−3 9.89 × 10−5

10−1 9.87 × 10−3 9.91 × 10−1 9.89 × 10−3

‖vh
′‖2

10−10 3.95 × 10−16 3.29 × 10−15 4.74 × 10−16

10−5 3.95 × 10−6 3.29 × 10−5 4.74 × 10−6

10−4 3.95 × 10−4 3.29 × 10−3 4.74 × 10−4

10−3 3.95 × 10−2 0.329 4.74 × 10−2

10−2 3.95 32.9 4.74
10−1 395 3283 474

If we take � = (0, 1) and Sh, the set of piecewise linear functions with uniform mesh
size h, then ‖φi‖L2(�) is (2h/3)1/2, and note that di is O(h1/2). Taking into account that
the dimension of the matrix G is proportional to 1/h, one can deduce that A

(k)
i ⊂ Â

(k)
i

might not occur even if h tends to be very small.1

Moreover, there might be a possibility that the norm of ‖f (u)‖L2(�) could be explo-
sive because of the properties of interval arithmetic. For example, table 1 shows the com-
puted norms for ‖vh‖2 and ‖vh

′‖2 of the function vh of the form vh = ∑K
i=1 [−δ, δ]φi

for small δ > 0, for three kinds of base functions {φi} on � = (0, 1). Namely, base
functions are chosen as: piecewise linear functions (100 uniform partitions) “linear”,
sin(πix) (1 � i � 100) “Fourier”, piecewise cubic Hermite functions (100 uniform
partitions) “cubic Hermite”. Note that, as indicated in table 1, the norm of the deriva-
tives could be very much larger than we might expect, even if the norm of the function
itself and the width of the coefficient intervals are relatively small.

3.4. Improvement of computation for finite-dimensional part

In order to overcome difficulties described in the previous subsection, we propose
a method to compute more effectively the finite-dimensional part of the candidate set by
using norm estimations. Let Uh be the finite-dimensional term of the candidate set in
(10) defined as a ball with radius γ > 0 of the form

Uh := {
ûh ∈ Sh | ‖ûh‖H 1

0 (�) � γ
}
. (19)

1 The situation is the same even if one uses estimates such as |((u∗′, φi)L2)| � ‖u∗‖L2(�) ‖φi
′‖L2(�).
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We define the K × K positive definite matrix D by Dij = (∇φj ,∇φi)L2 , the K × K

lower triangle matrix L by the Cholesky decomposition: D = LLT , and the matrix norm
ρ > 0 by

ρ = sup
‖x‖E=1

∥∥LTG−1Lx
∥∥

E
, (20)

where G is defined in (14) and ‖·‖E is the Euclidean norm of R
K . Then we obtain the fol-

lowing verification condition different from (17) in theorem 2 for the finite-dimensional
part.

Theorem 3. Define the candidate set U = uh + Uh + U∗ by (19) and (12), and denote
any element u ∈ U by

u = uh + ûh + u∗, ûh ∈ Sh, u∗ ∈ S⊥
h .

If it holds that

ρ sup
u∈U

∥∥PhFu − PhF
′(uh)ûh − uh

∥∥
H 1

0 (�)
� γ, (21)

then the former half of condition (11) is satisfied.

Proof. From (11), it is sufficient to show that

‖Nhu − uh‖H 1
0 (�) � ρ

∥∥PhFu − PhF
′(uh)ûh − uh

∥∥
H 1

0 (�)
(22)

for each u = uh + ûh + u∗ ∈ U .
It is easily shown that for a K-dimensional vector v := (vi) and vh = ∑K

i=1 viφi

∈ Sh, ‖vh‖H 1
0 (�) = ‖LTv‖E holds. Since

Nhu − uh = [
I − PhF

′(uh)
]−1
h

Ph

(
Fu − F ′(uh)ûh − uh

)
, (23)

by setting

vh := Nhu − uh =
K∑

i=1

viφi, v := (vi) ∈ R
K,

wh := Ph

(
Fu − F ′(uh)ûh − uh

) =
K∑

i=1

wiφi, w := (wi) ∈ R
K,

equation (23) is written as

Ph

(
I − F ′(uh)

)
vh = wh. (24)

From the definition of Ph, equation (24) is equivalent to

K∑
i=1

{
(∇φi,∇φj )L2 − (

f ′(uh)φi, φj

)
L2

}
vi =

K∑
i=1

(∇φi,∇φj )L2wi, 1 � j � K. (25)
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Then equation (25) is represented by the matrix and vector form

v = G−1Aw.

Consequently,

‖Nhu − uh‖H 1
0 (�) = ∥∥LTv

∥∥
E

= ∥∥LTG−1Aw
∥∥

E
�

∥∥LTG−1L
∥∥∥∥LTw

∥∥
E

= ρ
∥∥PhFu − PhF

′(uh)ûh − uh

∥∥
H 1

0 (�)
,

which proves the theorem. �

In (22), PhFu − PhF
′(uh)ûh − uh corresponds to the higher-order residual for the

Taylor expansion of PhFu at uh. Therefore, inequality (21) would be expected to hold
if the radii of Uh and U∗ are sufficiently small. In the actual calculation on computer,
we would compute the value of ‖PhFu − PhF

′(uh)ûh − uh‖H 1
0 (�) in an over-estimated

sense using α, γ and a priori constant C.
The estimate of ρ in (20) is generally reduced to a computation of the largest singu-

lar value of a matrix. There are some computational algorithms with result verification
to estimate rigorous bounds for the largest (or smallest) singular value (e.g., see [10]).
Moreover, the interval Cholesky decomposition algorithm for D = LLT is usually fea-
sible because of the positive definiteness of the matrix D.

Based on theorem 3, we formulate the following new verification algorithm AL-2.

Verification algorithm AL-2.

• k = 0
Set initial values γ (0) > 0 and α(0) > 0.

• k � 1

1. For a fixed small constant ε > 0 set

γ̂ (k) := (1 + ε)γ (k−1), α̂(k) := (1 + ε)α(k−1).

2. The kth candidate set U(k) is defined by

U
(k)
h := {

v̂h ∈ Sh | ‖v̂h‖H 1
0 (�) � γ̂ (k)

}
,

U(k)
∗ := {

v∗ ∈ S⊥
h | ‖v∗‖H 1

0 (�) � α̂(k), ‖v∗‖L2(�) � Chα̂(k)
}
,

U(k) := uh + U
(k)
h + U(k)

∗ .

3. Compute values of the kth iteration by

γ (k) := sup
u∈U(k)

ρ
∥∥PhFu − PhF

′(uh)ûh − uh

∥∥
H 1

0 (�)
,

α(k) := Ch sup
u∈U(k)

∥∥f (u)
∥∥

L2(�)
.

4. If γ (k) � γ̂ (k) and α(k) � α̂(k) hold then stop, and there exists a desired solution in
U(k) ⊂ H 1

0 (�) .



320 M.T. Nakao, Y. Watanabe / Numerical verification for elliptic equations

5. Set k := k + 1 and return to step 1. If k reaches a maximum iteration number or
γ (k) and α(k) exceed certain criteria then stop, and the verification fails.

The essential difference between algorithms AL-1 and AL-2 is that the finite-
dimensional part Uh of the candidate set is taken as a ball Uh in H 1

0 (�) in the latter.
Using the norm estimates, as shown in numerical examples in the next section, we can
expect to avoid the drawbacks of AL-1. Namely, we can overcome the difficulty caused
by local overestimates in the calculation of the vector d and the risk of explosive en-
largement of the candidate set caused by interval computations.

4. Numerical examples

We now give some numerical examples which confirm the effectiveness of algo-
rithm AL-2. The interval arithmetic in each verification step was implemented using
Sun Forte Fortran Desktop Edition 6 update 1 [11]2 on FUJITSU GP7000F model 900
(CPU: SPARC64-GP 400 MHz, OS: Solaris 7).

4.1. Example 1

Consider the following two point boundary value problem:

−u′′ + au′ + u = g,

u(0) = u(1) = 0,
(26)

where a � 0 is a parameter, and g is chosen such that u = sin(πx) is the exact solution
of (26). The interval � = (0, 1) is divided into N equal parts and Sh is taken as the set
of piecewise linear functions on (0, 1). Then dim Sh = N − 1, h = 1/N and a priori
constant C in (7) can be taken as 1/π [5]. Table 2 shows the verification results. The
solution is enclosed in a candidate set uh +Uh +U∗, where Uh and U∗ are represented as

Table 2
Verification results for piecewise linear basis.

AL-1 AL-2
maxi |Ai | ‖U∗‖

H 1
0 (�)

‖Uh‖
H 1

0 (�)
‖U∗‖

H 1
0 (�)

a N = 100 N = 200 N = 100 N = 200 N = 100 N = 200 N = 100 N = 200

0 0.00009 0.00004 0.02309 0.01173 0.00003 0.00001 0.02222 0.01111
0.1 0.00868 0.01536 0.07346 0.09360 0.00083 0.00041 0.02223 0.01111
0.2 0.03727 0.07194 0.16059 0.22073 0.00163 0.00081 0.02224 0.01112
0.5 0.36826 0.72471 0.64288 0.89934 0.00402 0.00200 0.02227 0.01112
1 3.50529 11.2050 3.10837 7.04551 0.00796 0.00397 0.02232 0.01114
5 × × × × 0.03825 0.01870 0.02325 0.01136

10 × × × × 0.08381 0.03867 0.02584 0.01195
20 × × × × 0.27512 0.09404 0.04287 0.01465

2 At present, the name has been changed to Sun ONE Studio 7, Compiler Collection Fortran 95.
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the magnitude of the H 1
0 norm in Sh and S⊥

h , respectively. In the table, maxi |Ai | means
the maximum value of each coefficient A

(k)
i obtained by AL-1, the last digit in the man-

tissa for each of the norm values is rounded-up, and × indicates that the corresponding
verification failed.

One can see that algorithm AL-1 fails when the terms of the first-order derivative
tend to be large, while AL-2 works well.

4.2. Example 2

Consider the following two-dimensional problem:

−�u = k · ∇u + u + g in �,

u = 0 on ∂�,
(27)

where � = (0, 1) × (0, 1), k = (k1, k2)
T ∈ R

2 is a parameter, and g is chosen such that
u = sin(πx) sin(πy) is the exact solution of (27). The approximate subspace Sh is taken
to be a double finite Fourier series of the form:

Sh =
{

N∑
m,n=1

amn sin(πmx) sin(πny); amn ∈ R

}
.

Then dim Sh = N2, h = 1/N and we can choose a priori constant C as N/√
((N + 1)2 + 1)π [12]. Table 3 shows the comparison of the two methods, and the

results seem to be similar to those of example 1.

4.3. Example 3

Consider the one-dimensional Burgers equation

−νu′′ + uu′ + g = 0,

u(0) = u(1) = 0,
(28)

Table 3
Verification results for the two-dimension case k = k1 = k2.

AL-1 AL-2
maxi |Ai | ‖U∗‖

H 1
0 (�)

‖Uh‖
H 1

0 (�)
‖U∗‖

H 1
0 (�)

k N = 10 N = 30 N = 10 N = 30 N = 10 N = 30 N = 10 N = 30

0.0 0.00089 0.00012 0.28468 0.10131 0.00198 0.00026 0.28468 0.10131
0.5 0.03883 0.02083 0.29325 0.10263 0.05153 0.01755 0.29208 0.10222
1.0 0.09043 0.03809 0.31275 0.10660 0.10350 0.03496 0.30204 0.10341
1.5 0.15381 0.06118 0.36187 0.11753 0.15899 0.05251 0.31492 0.10489
2.0 0.30024 0.10475 0.51491 0.15025 0.22030 0.07068 0.33127 0.10667
2.5 2.85612 0.36382 3.83422 0.40620 0.29205 0.08969 0.35260 0.10878
3.0 × × × × 0.37641 0.10966 0.38025 0.11125
4.0 × × × × 0.60983 0.15309 0.46481 0.11740
5.0 × × × × 1.02990 0.20575 0.63113 0.12604
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Table 4
Verification results for the trigonometric basis.

µ1/ν N = 100 N = 200 N = 500 N = 100 N = 200 N = 500

AL-1
maxi |Ai | ‖U∗‖

H 1
0 (�)

0.1 0.0041 0.0041 0.0041 0.0221 0.0111 0.0045
0.5 0.0210 0.0207 0.0206 0.0222 0.0112 0.0045
1.0 0.0459 0.0451 0.0445 0.0226 0.0114 0.0046
2.0 × 0.2884 0.2619 × 0.1458 0.0057
2.5 × × × × × ×
3.0 × × × × × ×
4.0 × × × × × ×
5.0 × × × × × ×

AL-2
‖Uh‖

H 1
0 (�)

‖U∗‖
H 1

0 (�)

0.1 0.0008 0.0004 0.0002 0.0221 0.0111 0.0045
0.5 0.0038 0.0019 0.0008 0.0221 0.0111 0.0045
1.0 0.0078 0.0039 0.0016 0.0222 0.0111 0.0045
2.0 0.0166 0.0080 0.0032 0.0224 0.0112 0.0045
2.5 0.0215 0.0102 0.0040 0.0226 0.0112 0.0045
3.0 0.0267 0.0125 0.0048 0.0228 0.0113 0.0045
4.0 0.0389 0.0174 0.0066 0.0234 0.0114 0.0045
5.0 0.0549 0.0228 0.0084 0.0243 0.0116 0.0046

where ν � 0 is the kinetic constant and g is chosen such that u = sin(πx) is the exact
solution of (28). Table 4 shows the verification results for the approximate subspace Sh

using the set of finite Fourier series of the form:

Sh =
{

N∑
n=1

an sin(πnx); an ∈ R

}
.

Then dim Sh = N,h = 1/N and a priori constant C can be taken as N/(π(N + 1)).
Though the examples are rather artificial, the results are sufficient to show that

algorithm AL-2 is superior to AL-1 when concerning equations including a first-order
derivative. On the other hand, we achieved a successful verification using AL-1 for a
more complicated forth order elliptic problem [13]. In that case, we actually utilized
special techniques which enabled us to avoid the influence of the derivatives, but which
are only applicable to the particular Fourier basis. We will apply this new algorithm to
more realistic nonlinear elliptic equations, for example, the Orr–Sommerfeld equation
or the Navier–Stokes equations in forthcoming papers.
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