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Abstract

We consider a numerical enclosure method for solutions of an inverse Dirichlet
eigenvalue problem. When the finite number of prescribed eigenvalues are given,
we recontruct a potential function, with guaranteed error bounds, for which the
corresponding elliptic operator exactly has those eigenvalues including the order-
ing property. All computations are executed with numerical verifications based
upon the finite and infinite fixed point theorems using interval arithmetic. There-
fore, the results obtained are mathematically correct. We present a numerical
example which confirms us the enclosure algorithm works on a real problem.

Keywords: Inverse elliptic eigenvalue problem, Numerical verification method,
Computer assisted proof.

1 Introduction

The inverse eigenvalue problems are known as the problem to find a potential function
so that the associated eigenvalue problem has the prescribed spectrum. Particularly,
Neher [10],[11] studied a numerical enclosure method of solutions for the inverse Sturm-
Liouville problem with finite data. Under the assumption that the potential is repre-
sented as a linear combination of some finite number of base functions, he presented
an algorithm determining the coefficients of the linear combiation with guaranteed ac-

curacy using the interval Newton method [1]. In the inverse eigenvalue problems, in



general, the enclosing method of the exact eigenvalues and eigenfunctions for ordinary
eigenvalue problems plays an essential role. Neher’s technique utilizes an enclosure
method for solutions of intial value problem for ordinary differential equations devel-
oped by Lohner [3] with shooting arguments as well as some theoretical results on the
Sturm-Liouville problems. However, these techniques, except for the formulation of
the problem, could not be applied to the multi-dimensional case, i.e., elliptic problems.
This is the principal motivation of our work in this paper. In other words, our main
result of this paper is an extension of Neher’s work to the inverse elliptic eigenvalue
problems with fimnite data by using quite different technique from [11].

We present a computing algorithm to reconstruct the potential function with ver-
ification from the finite number of prescribed eigenvalues as well as describe some
theoretical results for the guaranteed computations. The eigenvalue and eigenfunction
enclosure with preserving the ordering property of eigenvalues for ordinary problem
would be the main task of the present work. In order to attain the purpose we used
our numerical verification method for solutions of nonlinear elliptic problems devel-
oped by the authors’ research for years. The authors believe that this result is the first
approach in the world to the verified computation of solutions for the inverse elliptic

eigenvalue problems.

2 Formulation of problem
Consider the following Dirichlet eigenvalue poblem :

—Au+qu = AIu, x €

(1)
u = 0, x € 01,

where Q is a bounded convex domain in R? and ¢ € L>(Q). Here, ¢ is a C° function
on €.
Let {4;}i=1,..m be given finite data, real numbers, satisfying
pr < pg <o < g

Our aim is the finding a potential ¢ in some set of functions so that the lowest i-th
eigenvalue of (1) coinsides with y; for each 7, 1 < i < M.

We now define the set of functions

M
S={qeC’(Q)]q¢=q(a) =4+ > a;p;, where @ = (o;)j=1,..s € RM}. (2)
j=1
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Here, {¢;}=1,..ar is a set of linearly independent functios in C°(Q) and ¢ stands for
a fixed function, approximate potential. For a vector av = (¢vj)j=1,... s, we denote the
corresponding i-th eigenvalue and eigenfunction for the problem (1) with ¢ = ¢(«) by
Ai(@) and u;(«), respectively.

Then, our problem can be written as follows: find Jao € RM such that

Therefore, our final purpose is the enclosure of solutions for the M-dimensional non-

linear equation (3). However, notice that \;(«) is implicitly determined through the

solutions of the following elliptic eigenvalue problem with ¢ = ¢(«), for 1 < i < M:
—Au; + qu; = MNu;, x €S,

(4)
u; = 0, x € 0.
Thus, in order for solving (3), we have to compute explicitly, or with guaranteed error
bounds, the solutions of (4) for the given o € RM.

We now introduce some notations for later use. Let denote usual m-th order L2-
Sobolev space on 2 by H™ = H™(Q2) and the first order space with homogeneous
boundary condition by H} = H}(Q). Further, define the space for the eigenpairs by
V := H} x R with the canonical norm of product space. We denote the set of real

intervals and n dimensional interval vectors by IR and I R", respectively.

3 Verification algorithm by the interval Newton’s
method

In order to attain our purpose, we need some interval functions for the potential g.
Namely, for any [o] = ([oy]) € IRY, where [o;] = [y, @], interval function ¢([a]) of

potentials is interpreted as:
M
¢([o) = ¢+ a9
j=1
M
= {peS|[d=q+) a;d;, Va; € [oy]}.
j=1
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The mid point verctor of [a] € IR is denoted by m([«]). And, \;([a]) and u;([«])
imply the set of i-th eigenvalues and eigenfunctions of (4) for all « € [a].
In order to enclose the solutions for (3), we use the interval Newton’s method, similar

to that in [11], which is described as below.

INTERVAL NEWTON’S METHOD FOR NONLINEAR EQUATION (3)

1. Choose ¢, [a]® € IRM.
k:=0

2. Setting m® = m([a]*)), compute the followings with guaranteed accuracy, for

1< < M:
Ai(m®) : eigenvalue of (4) with ¢ = ¢(m®),

u;([@]) : eigenfunction of (4) with ¢ = ¢([a]®),

and set

3. Compute the Jacobian interval matrix:

7= ( ) )

Bozj

4. Execution of the interval Newton iteration:

IN([a]®)) ;= m®) — J=L(mb)),

5. If IN([a]®) C [a]®), then there exists exactly one a* € [a]®) such that f(a*) =
0,
otherwise, after setting []**V) := IN([a]®)) N [«]*®) and k := k + 1, go to Step
2, when k < ky.

The normal completion of the above algorithm implies that the interval function

q([@]®)) contains a locally unique potential function of the form

M

() =G+ Z g b;



such that the eigenvalue problem

—Au+qg(a®)u = Iu, =z €,
u = 0, x € 0,

exactly has the lowest M eigenvalues {j;}i=1,... m-

In the following sections, we describe the verified computational method for each
quantity in the above algorithm. That is, the eigenvalue enclosing/excluding and the
eigenfunction enclosing in Step 2 will be mentioned in Section 4 and 5, while the method
of the verified computations for Jacobians in Step 3 will be discussed in Section 6 and
7.

Remark 3.1. We might take the following alternative procedure in Step 5 instead
that [a]**+) .= IN([a]®)) N [a]®:

[a]®*) =1 — &, 1+ £]IN([o]®))  (c-inflation, see, e.g., [12]).

4 Eigenpair enclosing method

To execute the iterative process in the previous section, we numerically and rigorously
enclose the eigenvalues and corresponding eigenfunctions for the following normalized

eigenequation with a given potential function ¢ = ¢(«).

—Au+qu = Au,

/u2 = 1.
Q

In order to enclose the eigenpair (u, A) for (6), we use the numerical verification method

(6)

for solutions of elliptic problems developed in [6], [7], [8]etc. In our enclosure method,
the equation (6) is considered as a nonlinear problem in (u, A), and the eigenvalue and
eigenfunction are simultaneously enclosed near the approximate eigenpair. Particu-
larly, we use the enclosure method with uniqueness property which means that the
assured interval exactly contains one eigenvalue, see [5] for details.

Furthermore, in the present case, for the execution of the Newton-iteration, we need
to treat the interval valued function ¢([«]) as described before. But this requirement
causes no essential difficulty at all, for our method is originally based on a kind of

interval method with additional considerations on the error from the gap between



finite and infinite dimension. Thus we can enclose all eigenpairs around some neigh-
bourhood of an approximate solution of the discretized problem for (6) with set of
potential functions ¢ = ¢([a]) instead of ¢(«).

Also notice that our enclosure method in general presents the eigenvalue including
interval [I;,. and the uniqueness interval [,,; so that I;,. c Lyni, where I, c Ly
implies that the closure of I;,. is covered by the interior of I,,,;. Note that I;,. contains

an unique eigenvalue and that there is no eigenvalue in the set I,,; — Line-

5 Eigenvalue excluding method

It is necessary to guarantee the order of M eigenvalues for (1) to get the actually
lowest M eigenvalues. This can be done by the eigenvalue excluding technique which
was studied in [9],[4], and is also closely related to the arguements in the section 7. We
briefly remark here on the basic principle of the method.

For, usually rather narrow, an interval A € IR and, for an A € A, set
L(A\) = —-Au+ (¢ — Mu.

Then, since L()\) is a linear elliptic operator, the following equation has a trivial

solution v = 0:
LANu = 0, z€Q,

(7)
u = 0, x € 0.

Therefore, if we validate the uniqueness of the solution in (7), it implies that A is
not an eigenvalue of (1). That is, there is no eigenvalue of (7) in A. The method
to prove this uniqueness is analogous to that in the section 7. Thus the eigenvalue
excluding process advances from the one to the next, backward or forward to the
adjacent interval. Since, by some eigenvalue shift, we can easily present the lower
bound of the spectrum of (1), by an appropriately combining this excluding procedure
with the enclosing technique described before, we obtain the eigenvalue ordering as far
as each eigenvalue is geometrically simple.

We now note that, although we treat the interval potential function, it is sufficient
to complete this eigenvalue excluding process only for the midpoint potenial ¢(m[«]).

That is, we can prove the following theorem.



Theorem 1. Assume that M eigenvalues are enclosed in the intervals Iéj ) with
uniqueness in the disjoint M intervals 1) (1 < j < M) for the interval potential func-
tion ¢([a]) (Fig.1). Further assume that the eigenvalue excluding process is completed
for the midpoint potenial ¢(m[a]). Then each IU) exactly contains j-th eigenvalue for

all ¢(a), « € [a]. That is, the lowest M eigenvalues are validated for all potentials.

Proof. Let J; be the left most excluded interval for ¢ = ¢(m[a]) as in Fig.1. The
real constant § in Fig.1 is chosen so that all elliptic operators Lz = —A + (¢([e]) — 3)
are positive definite.

Now, if there exists an & € [a] such that A\;(&) is in the excluded interval J;, then,

A2(@&), in general Aj(&) for 2 < j, has to be in the interval IV by the existential

assumption on I§"”. On the other hand, A2(m[a]) is in the another interval 1§? apart
from 7™ (Fig.1). Tt implies that, by the continuity argument with parameter «, the
second eigenvalues Ay(«) has to exist continuously in the interval [Ag(&@), A2(m[a])]. But
this interval covers I, in Fig.1, where no eigenvalue exists, which is a contradiction.
And similar arguement can also be applied to the j-th eigenvalue for 2 < 7 < M — 1.
Since it is not necessary any excluding argument for 7 = M due to the uniqueness

assumption, we conclude the proof. O

Ji Juil Iz
I 1
- +——t —————t ———————
4 Ay{er) Aala) Iy Ag{m([acf))

Figure.1 Eigenvalue enclosing and excluding

6 Computation of the Jacobian

In the Newton’s iteration, we need to enclose the Jacobian matrix appearing in Step
3 in the algorithm. This can be done as follows.

Consider the i-th eigenvalue \; and corresponding eigenfunction w; satisfying the



following normalized eigenequation:

—Au; +q(a)u; = N,

/%2 = 1.
Q

Then the pair (u;, \;) = (u;(a), A\i(«)) can be considered as a map from R into V.

(8)

Differentiating formally both sides of (8) in «;, we have

—Au} + pjui + g(@)u] = Nu; + A,

/Quiu; = 0,
Q

i .
and —, respectively.
Q' Q'

For the moment, we suppose the existence of derivatives u; and A, which will be

(9)

Us

where v} and A] stand for

proved later.

Setting v := u} and p := A, the equation (9) is written as

—Av+(¢g—X)v = (p— ¢j)ui7

/2uz~v = 0.
Q

By calculating the inner product of both sides of the first equation in (10) with u;, we

(10)

have
(—Av, ;) + ((¢ — N)v,wi) = (1 — &) ui, wi). (11)

where (¢, ) = /Q b

Therefore, using the integration by part taking account of H? regularity of the eigen-

function, we can easily obtain from (11)
p= [ épida, (12)

that is, % = /Qquuqu;, 1<i,j5 <M.

Now, we consider the existence of a solution (v, ) of (10), when (\;, u;) is given.
In order to prove this, we take a numerical approach which is based on the following
theorem.

Theorem 2. If (¢,v) = (0,0) is the unique solution of the homogeneous problem
—Ap+(g—N)p — qu; =0,

/ Quip = 0,
Q

8
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then there exists a unique solution (v, i) for the problem (10).

Proof. Let (—A)™' denote the solution operator for the Poisson equation with
homogeneous Diriclet boundary condition on 2. We define the linear operator ® on V'
by

é ¢ —(=A)" g —2)() (=) u() ¢
- . (14)
¥ v /Q 2u;(+)dx 1 v

®

Then, since the second term of ® is a compact operator on V', ® is a Fredholm operator
with index 0 on the same space. Therefore, the conclusion follows by the well known
Fredholm alternative theorem. O

We note that the hypothesis in Theorem 2. can be numerially proved by the
similar method to that for the eigenvalue excluding technique in the previous section.
Usually, the assertion in the theorem is proved for the interval potential function ¢([«])
and corresponding set of all i-th eigenvalues A;([c]) and eigenfunctions u;([«]).
Although Theorem 2. plays an essential role on the existence of the Jacobian, we need
further consideration below. Namely, we have to show the Jacobian .J actually exists
and each element of J coincides with the solution p of (10), whenever Theorem 2.
holds for each « in a certain interval [«].

For simplicity of notations, in stead of the problem (8) and its differential form (10),
we consider the following eigenvalue problem for (u, \) and associated linear equation
in (v, ) with potential ¢ = ¢(a) € C°(Q2) which is differentiable in one real parameter

«.

(15)

and, for an eigenpair (u, \) of (15),

—Avt(g—=Nv = (k=)

/2uv = 0.
Q

Here, in (16), we suppressed the dependency on the parameter o of u, A\, ¢ and ¢’. The

(16)

following theorem with one dimensional parameter will be sufficient for our present

purpose.



Theorem 3. Let [a] € IR be an interval, and let (u(a), A(«)) be an eigenpair of
(15) for v € [«]. Assume that associated problem (16) has a unique solution pair (v, u)

for each « € [a]. Then, the following limit properties hold:

lim A0t ule) oy A0 Z AN (17)
d—0 ) 6—0

Proof. First, we set

Then by some elementary calculations, we have

([ —A¢+ (g(a+6) —AMa+6))p = (p—o)u(a)

+ {(Ma+8) = Ma) = (gl +8) — g(@)}v, (18

/Q(u(oc+5)+u(a))¢dx = —/Q(U(Oé+5)—u(oz))vdx.

Next, we fix an « € [a]. Taking account of the interval property in Remark 7.2 in
the next section, it can be considered that u(a+6)+u(«) € 2u([a]). Therefore, by the
assumption, (18) has a unique solution pair (¢, p) € V for each ¢ satisfying a+ 6 € [a].
Then, our aim is to show that § — 0 implies (¢, p) — (0,0). In order to prove it, we

consider the following slightly general non-homogeneous problem instead of (18):

—Ad+ (gla+6) = Ma+06))p = pu(a)+E,

(19)
| (wla+8) +u(@)e = n.
Here, (&, n) is an element in L*(Q) x R.
We now define the linear map A5 on V' by
é —(=8)"Hg(a+8) = Mo+ 8))¢ + p(=A)~'u(a)
As = (20)
p /Q(u(oz +8) + u(a))ddz + p
Then, (19) can be rewritten of the form
(I —As)z=00, (21)
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where, z = (¢, p), b = {((—A)~'¢, n) and I means the identity map on V.
It is now sufficient to show that if & — 0 then z — 0 uniformly in 6. Since, by
our assumption, there exists the bounded inverse map (I — As)~! for each § such that
a+6 € [a] from the Banach bounded inverse theorem, we prove that they are uniformly
bounded in 0.

If such a conclusion does not hold, then there exists a positive constant Ky , a

sequence {7,} in V' and positive numbers {6, } such that 7,, — 0, « + ¢,, € [a] and
(I — A5,) 7' 7l] > Ko (22)

Setting z, := (I — As, ) '7, the sequence {z,} is bounded in V, because of the as-
sumption and Remark 7.1 in Section 7. According to the weakly compactness of V,
there exists an element zy € V' such that a subsequence of {z,} weakly converges to

it. We denote this subsequence by the same symbol. That is,
Zn — 29 (n— 00).

On the other hand, since some subsequence {é,,} of {6,} also converges to a real 6,
Ap; — Ay := Ay, in L(V, V). We denote again these subsequences by the same original
symbols.

Now, by the compactness of the operator Ay, we have Ay(z, — z9) — 0, strongly in V.

Therefore, observe that
Apzy — Aogzo = (A — Ag)zn + Ao(zn — 20) — 0 in V. (23)

Thus, on the equality: z, = A,z, + 7,, the left-hand side weakly converges to z,
while the right-hand side strongly converges to Agzp in V' from (23). Hence, by the
usniqueness of the limit, we have Ayzy = 2y and the convergence has to be strong, i.e.,
zZn — 2o (strongly in V7). This yields zy = 0 because of the uniqueness of the trivial
solution for (I — Ap)z = 0. Therefore, we have ||z,|| — 0, which contradicts with (22).

Now, the assertion of the therorem immediately follows by the uniform boundedness
of (I — Ag) tin 6. O

Remark 6.1. If we use the verification scheme based on the Banach fixed point theo-
rem as in [15] for the uniqueness proof of the solution of (13), the uniform boundedness
of (I — As)~1 will be derived from some consideration on the cotractivity condition

around the trivial solution instead of the above compactness arguements.
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We assumed here the continuous dependency of the eigenvalues and eigenfunctions
on the parameter. But it can also be proved from the numerical results. That is, we
have the following theorem.

Theorem 4. Under the same condition in the theorem 3, A(«) and u(«) are locally
continuous in a on [«.

Proof. For a fixed a, let ¢ = ¢(a, 6) := u(a+6) — u(a), p = p(a, 6) := Ma+6) —
Aa), and 0 = o(a, 6) := q(a+ 6) — g(«). Then we have

—Ad+ (gla+8) = Ma+0)p = (p—o)ula),
(24)
/Q(u(a +6) +u(a))pde = 0.

Hence, it is easily seen that if the A is continuous at « then, by the similar arguments
in the proof of Theorem 3, then the w is.
We now consider the continuity of A. Observe that, taking the inner product with

u(or+9),

(—A¢,u(a+96)) + (q(a+6) — AMa+6))p, u(a + 6))

= plu(a), ula+8)) — (ou(a), ula + 8)).
Since the lefthand side vanishes, we have
plu(@), ula+ ) = (ou(a), u(a + ). (25)

We now it would be possible, by the verified computational results, to deduce that

there exists some constant C, independent of §, satisfying
(u(a),u(a+ 6)) > C >0 for arbitrary é such that o + ¢ € [a].

Then the continuity of the A follows from (25). O

7 Enclosing the trivial solution of the linearlized
problem with uniqueness

In this section, we mention about the method to enclose the trivial solution of (13)

with uniqueness property. This can be done by applying our numerical verification
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method to the following set of equations with interval parameters [«].

—A¢ + (q([a]) = Ma]))¢ — ~yu(la]) =0,
(26)
2 = 0
[ 2u(la)e = o
where we suppressed the i-th dependency of eigenvalue and eigenfunction. We define
the set valued map, similar to that in the proof of Theorem 3, which can be considered

as the set of the operators by

é — (=) (g([o]) = Mla))¢ + v (=) u([a])
Alq] ( ) = (27)
7 | 2u(e)dz +
Then, (26) can be rewritten of the form
(I — Az =00, (28)

where, z = (¢,v). Let Sy C V be a finite dimensional subspace with dim Sy = N and
let Py be the orthogonal projection from V onto Sy. Then the Newton-like operator
on V is defined by

N(z)=z—-[I- A[a]]jleN((I - A[a])z —7),
and set
T([a),7)z := PyN(z) + (I — Py)(Agz + 7). (29)

Here, 7 is a small pertubation of the righthand side of (28) which would be used in
later, and [I — Aj,)]y" stands for the finite dimensional Newton-like operator on Sy for
the problem, i.e., approximate inverse operator, see [7], [13], [14], [8] etc. for details.
Then, the criterion for the proof of unique existence of the trivial solution can be

presented as follows(cf. [9] or [4]):
Lemma 1. For a nonempty, bounded, closed and convex subset U in V', let assume
that
T(jo),0)U C U. (30)

Then, the trivial solution is the unique solution of (I — A,)z = 0 for each a € [«],
more exactly, for each equation (26) so that u([«]) in (27) is replaced by the arbitrary
v € u([a]), as described in the Remark 7.2 later.
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The proof of this lemma is quite analogous to that in [9].
Usually, the set U satisfying the condition (30) is chosen such that U = Uy & Uy,
where Uy C Sy and U, C Sy.

And, actually, the verification condition (30) is taken of the form:

PyN(U) C Uy
(31)
(I — Px)Aw(U) C Uy,
Here, for an operator K, K(U) = {Ku | v € U}. The set Uy is chosen as a linear
combination of base functions in Sy with interval coefficients, while the set U, a ball
in Sy with radius x > 0.

Namely,
~ ~ N J— ~
Uv ={¢ € Sn | ¢=D_[A4;,A];},
7=1

and

UL={¢ €Sy llolly <},

respectively, where {ng}jv:l is a basis of Sy.

Note that Py (U) can be directly computed or enclosed by solving a linear system
of equations with interval righthand side (e.g., see [7], [14] for details). On the other
hand, (I — Py)A[q(U) is evaluated by using the constructive error estimates for the

projection Py of the form, for z = (21, 25) € (Hy N H?) X R,
(I = Py)2hllmy < C(N)[|Az]]2e, (32)

where C(N) is a positive constant numerically determined. Here, ((I — Py)z); € H}
stands for the first component of the element, and usually ((Py)z)2 = 2, therefore,
(I — Py)z)y =0.

Thus, the former condition in (31) is validated as the inclusive relations of corre-
sponding coefficient intervals and the latter part can be confirmed by comparing two
nonnegative real numbers which correspond to the radii of balls. In the actual com-
putations, we use an iterative method for both part in (31), which can be considered
as an interval Newton-like method for the first part and the simple iteration for the

second part(see [7], [13], [14] etc. for details).
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Remark 7.1. Note that if the verification condition (30) is satisfied for a set U, then,
from the continuity arguement on the operator Apy, for each 7 such that ||7||;, < e for

sufficiently small €,
T(la],7)U C U (33)

holds. This fact implies that each unique solution for small perturbed non-homogeneous
equations of (28) also belongs to the same set, U.

Remark 7.2. We give some consideration on the inclusion property : for o, a+6 €

[,

u(a+6) + u(a) € 2u([a]). (34)

Notice that u([a]) is treated, in the actual computational process, as the set of elements
in H; of the form
N
(o) = 32 Bjdi® < k>,
7=1
where < k >:= {¢ € (Sn)i C Hy | ||¢[ly; < &} where (Sy)i means the orthogonal
complement subspace in Hj for the first compoment of Sy. By the fact that both of
u(o) and u(a + 6) belong to u([«]), there exist b;i) € Bj and k; €< k>, fori =1,2,
such that N
u(a) = b;l)q;j @k and ula+6) =Y b§~2)q5j D Ka,

7j=1 7=1
which yields that

O + b5 € 2B, 1< i< M, and |51+ ma [y < 25

Thus the desired inclusion (34) follows.

8 Numerical examples

We present several numerical examples which show our enclosing algorithm really
works. Let Q := (0,7) x (0, 7) in R?. In order to avoid the non-deterministic property,
we assume that the potential function has the following symmetry about the barycenter

of Q:
q(z,y) = q(m —z, 7 —y).
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We assumed the potential function ¢ of the form(M=4):

q(z,y) := ay + ag cos(2z) + az cos(2y) + ay cos(2x) cos(2y).

The spectral approximation and the constructive error estimates were utilized for the
enclosing eigenvalues, eigenfunctions and Jacobian as well as excluding eigenvalues.

That is, Sy C V is taken as

K, K>

Sy = {(6.7) €V | dla.y) = Y3 Aysin(in)sin(jy), Ay € R, 7€ R},

i=1j=1

The orthogonal projection Py : V' — Sy is defined by, for v = (u1,us) € V,
(V(u1 — (Pyu)1), Vén) + (u2 — (Pyu)z,v) =0, V(dn,7) € S,

where the second inner product implies the simple multiplication of two real numbers.

Then, it is known that the constant C'(N) in (32) can be taken as

V2(N +1)

‘N =i

Example 1:

We tried to reconstruct ¢(z,y) = cos(2z) from four eigenvalues. We took initial
guess: ¢ (x,y) = 0.9 cos(2x).
By using the above ¢(*), we first executed the approximate Newton process like as the
algorithm in Section 3(cf. [11]) to refine the inital guess. As a result, we obtained
an approximation which is very closed to cos(2x), within almost machine epsilon, and
adopted it as q.
Prescribed eigenvalues are as follows:
w1 = 1.470654354933839,  uo = 4.470654354933839,
ps = 4.979189215751357,  pq = 7.979189215751357.
The above data was obtained as the lowest 4 eigenvalues from the approximate solu-
tions of the ordinary eigenvalue problem with ¢(z,y) = cos(2z) discretized by using a
spectral Galerkin method in Sy.
We succeeded the reconstruction of the potential function ¢([«]) with local uniqueness

as the following results:

ap € [—0.25209635682266250, 0.25209635682266260] x 10~
ay € 1+ [—0.13274480437239270,0.13274480437239280] x 108
ag € [—0.96398812017349510, 0.96398812017349600] x 10~ (3)
ay € [—0.50884999871818090, 0.50884999871818120] x 10~
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Here, we used approximation subapace Sy with K; = Ky = 10.
Then, for the above interval potential function ¢([«]), corresponding eigenvalues are

enclosed as

Ar([a]) € [0.147065435448617, 0.147065435538151] x 10",
As([a]) € [0.447065435444676, 0.447065435542092] x 10",
As([a]) € [0.497918921557205, 0.497918921593066] x 10",
M ([o]) € [0.797918921555445, 0.797918921594826] x 10"

Furthermore, in the verification of the existence of the Jacobian, we could also enclose
the trivial solutions in the small intervals and norms with order of magnitude ~ 10~? —
1012,

And, we successfully completed the eigenvalue excluding process between these
eigenvalues for the midpoint potential function g(m[«]). In this procedure, we needed
some addtional computations with more fine approxiation subspaces, because the
uniquely existential condition is fairly delicate problem at the points very closed to
the actual eigenvalues. Actually, it was necessary to take so that K := K| = K, > 10,

e.g., maximum case K = 50.

Finally, in order to examine the sensitivity for the input data {s;}i—1 ... pr, we tried
to add some small perturbed intervals to the original point data, such as p; = p; +
[—e, 4¢]. As the result, we succeeded the reconstruction for £ < 0.05. But, for e = 0.1,
the eigenpair enclosing process in Section 4 failed due to the wide width of intervals,

which would be considered rather natural by the property of interval arithmetic.

Example 2: Reconstruction of ¢(z,y) = —2 + cos(2x) — cos(2x) cos(2y)
The way of setting for ¢ is same as previous example. K; = Ky = 10 for Sy.
Prescribed eigenvalues are
1 = —0.8270142949509, pe = 2.4615199904499,
ps = 2.9500526665779, 4 = 5.9765623708221.

Enclosing intervals «;, 1 < j < 4, with uniqueness are as follows:

ap € —2 +[-0.3089173380, 0.3089173380] x 10~®
ag € 1 +[—0.1490897049, 0.1490897049] x 107
ag € +[—0.2416657724, 0.2416657724] x 10~ 7 (36)
ag € —1 +[—0.1037820952,0.1037820952] x 1075
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Example 3: Reconstruction of ¢(z,y) = 10 + 5 cos(2z) + 3 cos(2y) + 3 cos(2z) cos(2y)
The way of setting for ¢ is same as example 1 and K; = K, = 15. Prescribed

eigenvalues are

py = 8.9232011202383, e = 11.9106924233670,

w3 = 13.6562169567569, 4 = 16.7797156194290.

Enclosing intervals a;, 1 < j <4, with uniqueness are as follows:

ap € 10 + [—0.4072392255, 0.4072392255] x 10~
ay € 5+ [—0.5651032512,0.5651032512] x 108 -
a; € 3+ [—0.4740982608,0.4740982608] x 108 (37)
a; € 3+ [—0.6225533666,0.6225533666] x 10~

We used the following computing facility in Computing and Communications Cen-

ter, Kyushu University to execute the above enclosing algorithm:

e Fujitsu GP7000F Model 900(SPARC64-GP: 300MHz)
e Fujitsu Fortran Compiler Driver Version 4.0.2

o INTLIB-90(Interval Computation Module)
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