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Abstract

In this paper, we propose a numerical method to verify the invertibility of second-order linear elliptic
operators. By using the projection and the constructive a priori error estimates, the invertibility condition
is formulated as a numerical inequality based upon the existing verification method originally developed
by one of the authors. As a useful application of the result, we present a new verification method of
solutions for nonlinear elliptic problems, which enables us to simplify the verification process. Several
numerical examples that confirm the actual effectiveness of the method are presented.

AMS Subject Classifications: 35J25, 35J60, 65N25.

Keywords: Numerical verification, unique solvability of linear elliptic problem, finite element method.

1. Introduction

We consider the solvability of the linear elliptic boundary value problem of the form

Lu ≡ −�u+ b · ∇u+ cu = g in �,

u = 0 on ∂�,
(1.1)

that is equivalent to the invertibility of the operator L on a certain function space.

Here, for n = 1, 2, 3, we assume that b ∈ (
W 1∞(�)

)n
, c ∈ L∞(�), where � ⊂ Rn is

a bounded convex domain with piecewise smooth boundary.

By using this result, we present a procedure to compute the operator norm corre-
sponding to the inverse L−1, and then, we formulate a numerical verification method
of solutions for the following nonlinear elliptic problems:

−�u = f (x, u,∇u) x ∈ �,
u = 0 x ∈ ∂�. (1.2)

Several works, based upon the principle originally found by one of the authors, have
been presented for the numerical verification methods of solutions for (1.2), e.g.,
in [3], [6] etc. They use a method that consists of two procedures; one is a finite
dimensional Newton-like iterative process, the other is the computation of the error
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caused by the gap between the finite and infinite dimension in each iterative proce-
dure. In general, the method for the finite dimensional part utilizes a kind of interval
Newton method; and it has been recently observed that in the case of having the
term with a first order derivative ∇u, this iterative process sometimes fails due to
the divergence of the interval computations. In order to overcome this difficulty, we
considered an improvement, in [7], which adopts a technique that avoids directly
solving the interval system of equations for the finite dimensional part.

In the present paper, we propose a new approach that utilizes the direct estimation
of the norm of linearized inverse operators for (1.2) and yields further simplifica-
tion of the verification procedures. This approach is in fact an extension of the
method presented in [7]. Namely, we first verify the invertibility for linearlized oper-
ators and compute guaranteed norm bounds for its inverse by applying the same
principle as for the existing method. Next, we show the existence of solutions for
(1.2) by proving the contractivity of the Newton-like operator with a residual form.
Another direct computational method of bounds for the linearized operator has
already been proposed by Plum (see, e.g., [8], [10] etc.) using the eigenvalue enclo-
sure methods with a homotopic technique. His method uses some homotopic steps
with additional base functions and verified computations for relatively small matrix
eigenvalue problems; this is considered a quite different approach from the present
method. On the other hand, our verification procedure for nonlinear problems is
very close to Plum’s method based upon the infinite dimensional Newton’s method
of the residual type. Therefore, a comparison of these two methods, in respect to the
total computational costs for verification of nonlinear problems, would very much
depend on the individual problem.

In the below, we denote the L2 inner product on � by (·, ·) and the norm by ‖ · ‖L2 .
And denote the usual L2 Sobolev spaces on � by Hk(�) for any positive integer k.
For the first-order Sobolev space H 1

0 (�) with homogeneous boundary condition,
we define the norm by ‖v‖H 1

0
:= ‖∇v‖L2 , and also define the H 2 semi-norm on �

by, e.g., when n = 2,

|u|H 2 =
(
‖uxx‖2

L2 + 2
∥∥uxy

∥∥2
L2 + ∥∥uyy

∥∥2
L2

) 1
2
.

For n = 1 or n = 3, analogously defined.

2. Invertibility Condition of Linear Elliptic Operators

In the present section, we consider the numerical verification condition of invert-
ibility for the operator L defined by (1.1), as well as we present a method to estimate
the norm of the inverse operator corresponding to L−1.

We now introduce the finite dimensional subspace Sh of H 1
0 (�) depending on the

parameter h with nodal functions {φi}1≤i≤N . And, for each v ∈ H 1
0 (�), define the

H 1
0 -projection Phv ∈ Sh by

(∇(v − Phv),∇φh) = 0, ∀φh ∈ Sh.
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Further, we assume that there exists a positive constantC0 which can be numerically
estimated satisfying, for any u ∈ H 2(�) ∩H 1

0 (�),

‖u− Phu‖H 1
0

≤ C0h|u|H 2 . (2.1)

Notice that the invertibility of the elliptic operator L defined in (1.1) is equivalent
to the unique solvability of the fixed point equation

u = Au, (2.2)

where the compact operator A : H 1
0 −→ H 1

0 is defined by Au := �−1(b · ∇u+ cu)

and where�−1 stands for the solution operator of the Poisson equation with homo-
geneous boundary condition.

Now, according to the usual verification principle, e.g., [6], we formulate a
sufficient condition for which Eq. (1.2) has a unique solution. As the preliminary,
we define the matrices G = (Gi,j ) and D = (Di,j ) by

Gi,j = (∇φj ,∇φi)+ (b · ∇φj , φi)+ (cφj , φi),

Di,j = (∇φj ,∇φi), for 1 ≤ i, j ≤ N.

Let L be a lower triangular matrix satisfying the Cholesky decomposition: D = LLT .
And we denote the matrix norm by ‖ · ‖E induced from the Euclidean norm | · |E in
RN . Also, we define the following constants:

Cb = ‖ |b|E ‖L∞ , C′
b = ‖∇ · b‖L∞ , Cc = ‖c‖L∞ ,

C1 = C0(‖∇ · b‖L∞Cp + Cb), C3 = Cb + CcCp,

C2 = C0CcCp, C4 = Cb + C0Cch,

where ‖·‖L∞ meansL∞ norm on� andCp is a Poincaré constant such that ‖φ‖L2 ≤
Cp‖φ‖H 1

0
for arbitrary φ ∈ H 1

0 (�). Then we have the following main result of this
paper.

Theorem 2.1: If the matrix G is invertible and, for the constants defined above,

C0h(C3M(C1 + C2)h+ C4) < 1

holds, then the operator L defined in (1.1) is invertible. Here, M ≡ ‖LTG−1L‖E and
C0 is the same constant as in (2.1).

Remark 1: The main cost for checking the invertibility condition consists of the guar-
anteed estimation of ‖LTG−1L‖E . First, we compute the matrix L by the interval
Cholesky-decomposition. Next, by using the approximate LU decompositin of G and
some error estimates, we enclose the guranteed inverse G−1. Finally, we make a verified
computation of the largest singular value for the matrix LTG−1L, which is equal to the
square root of the largest eigenvalue of symmetric matrix LTG−TDG−1L, to obtain
the desired estimation.
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Proof: First, as usual, we decompose the equation u = Au as

Phu = PhAu,

(I − Ph)u = (I − Ph)Au,

where I implies the identity map on H 1
0 (�).

Next, according to the same formulation to that in [4], [6] etc., we define two oper-
ators by

Nhu ≡ Phu− [I − A]−1
h Ph(I − A)u

and

T u ≡ Nhu+ (I − Ph)Au,

respectively, where [I − A]−1
h means the inverse of Ph(I − A)|Sh : Sh −→ Sh. Note

that if we define the Galerkin approximation Ah on Sh of the operator A, then

[I −A]−1
h coincides with (I −Ah)

−1 on Sh. The existence of the operator [I −A]−1
h

is assumed, which is equivalent to the regularity of the corresponding matrix, and
is numerically followed by the unique solvability of the linear system of equations
in the verification process.

We now, for positive real numbers α and γ , define the set U = Uh + U⊥ by

Uh :=
{
uh ∈ Sh : ‖uh ‖H 1

0
≤ γ

}
,

U⊥ :=
{
u⊥ ∈ S⊥

h : ‖u⊥ ‖H 1
0

≤ α
}
,

where S⊥
h stands for the orthogonal complement of Sh in H 1

0 (�). Then, by the fact
that u = Au is equivalent to u = T u, in order to prove the unique existence of

a solution to (2.2) in the set U , it suffices to show the inclusion T U
◦⊂U due to

the linearity of the equation (e.g., [12]), where T U
◦⊂U implies T U ⊂

◦
U , i.e., the

closure of T U is included by the interior of U .

Further notice that a sufficient condition of this inclusion can be written as

‖NhU‖H 1
0

≡ sup
u∈U

‖Nhu‖H 1
0
< γ, (2.3)

‖(I − Ph)AU‖H 1
0

≡ sup
u∈U

‖(I − Ph)Au‖H 1
0

≤ C0h sup
u∈U

|Au|H 2

≤ C0h sup
u∈U

‖b · ∇u+ cu‖L2 < α, (2.4)

where we have used the estimate (2.1) and well known inequality |φ|H 2 ≤ ‖�φ‖L2

for φ ∈ H 2(�) ∩H 1
0 (�) on the convex domain �.
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In the below, we estimate ‖Nhu‖H 1
0

and ‖b·∇u+cu‖L2 in (2.3) and (2.4), respectively.

First, for arbitrary u = uh + u⊥ ∈ Uh + U⊥, setting ψh := Nh(uh + u⊥), we have

ψh = uh − [I − A]−1
h Ph(I − A)(uh + u⊥)

= [I − A]−1
h PhAu⊥. (2.5)

Now, note that for vh := PhAu⊥ ∈ Sh we have

(∇ψh,∇φh)+ (b · ∇ψh, φh)+ (cψh, φh) = (∇vh,∇φh), ∀φh ∈ Sh. (2.6)

Denoting

ψh :=
N∑

i=1

wiφi and vh :=
N∑

i=1

viφi, (2.7)

from (2.6) we have a matrix equation of the form

G �w = D�v. (2.8)

Here, �w = (w1, w2, . . . , wN)
T and �v = (v1, v2, . . . , vN)

T are coefficient vectors of
ψh and vh, respectively. Therefore, from (2.7) and (2.8), it follows that

‖ψh‖2
H 1

0
= �wTD �w
= �wTDG−1D�v
= (LT �w)T (LTG−1L)(LT �v)
≤ ‖LT �w‖E‖LTG−1L‖E‖LT �v‖E
= ‖ψh‖H 1

0
‖LTG−1L‖E‖vh‖H 1

0
.

Note that, from the above fact, we have‖LTG−1L‖E = ‖[I−A]−1
h ‖H 1

0
. Thus, defining

M ≡ ‖LTG−1L‖E , we obtain

‖ψh‖H 1
0

≤ M‖PhAu⊥‖H 1
0

= M‖Ph�−1(b · ∇u⊥ + cu⊥)‖H 1
0

≤ M‖�−1(b · ∇u⊥ + cu⊥)‖H 1
0
. (2.9)

Next, letting ψ1 := �−1(b · ∇u⊥), some simple calculations yields that

‖ψ1‖2
H 1

0
= (∇ψ1,∇ψ1) = (−�ψ1, ψ1)

= (−b · ∇u⊥, ψ1)

≤ ‖u⊥‖L2‖div(bψ1)‖L2

≤ C0hα(‖∇ · b‖L∞Cp + Cb)‖ψ1‖H 1
0
,

(2.10)

where we have used the fact ‖u⊥‖L2 ≤ C0hα. Furthermore, setting ψ2 := �−1(cu⊥)
and by applying the similar argument to the above, we have

‖ψ2‖2
H 1

0
≤ CcCpC0hα‖ψ2‖H 1

0
. (2.11)
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Thus, by Eqs. (2.9)–(2.11), we obtain the following estimate for the finite dimensional
part:

‖NhU‖H 1
0

≤ M(C1 + C2)hα, (2.12)

where C1 ≡ C0(‖∇ · b‖L∞Cp + Cb), C2 ≡ CcCpC0.

Next, observe that

‖b · ∇uh + cuh‖L2 ≤ Cb‖uh‖H 1
0

+ CcCp‖uh‖H 1
0

≤ (Cb + CcCp)γ,

‖b · ∇u⊥ + cu⊥‖L2 ≤ Cb‖u⊥‖H 1
0

+ Cc‖u⊥‖L2

≤ (Cb + C0Cch)α.

Therefore, by using (2.4) and the triangle inequality, we have

‖(I − Ph)AU‖H 1
0

≤ C0h(C3γ + C4α), (2.13)

where C3 ≡ Cb + CcCp, C4 ≡ Cb + C0Cch.

Now from Eqs. (2.12) and (2.13), the invertibility conditions (2.3) and (2.4) are
reduced to

M(C1 + C2)hα < γ, (2.14)

C0h(C3γ + C4α) < α. (2.15)

For arbitrary small ε > 0, if we set γ := M(C1 + C2)hα + ε, then the condition
(2.14) clearly holds. Therefore, by substituting it for (2.15) we have

C0h(C3(M(C1 + C2)hα + ε)+ C4α) < α,

which is equivalent to

1 − C0h(C3M(C1 + C2)h+ C4) > 0.

Thus the desired conclusion is obtained. ��

Remark 2: The conditions (2.3) and (2.4) are equivalent to |||T |||< 1 in some scaled
norm ||| · ||| inH 1

0 , e.g., |||v|||2 ≡ ||Phv||2
H 1

0
/γ 2 +||(I−Ph)v||2

H 1
0
/α2. Then, the inverti-

bility of theoperator I−T follows by the convergence of the Neumann series.

When the coefficient function b of the first-order term is not differentiable, we have
the following alternative condition.

Corollary 1: For the operator L defined in 1.1, let b ∈ (L∞(�))n. If

C0h(C3M(Ĉ1 + C2h)+ C4) < 1,

then the operator L defined in (1.1) is invertible. Here, Ĉ1 = √
nCbCp.
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Proof: The difference from the proof of Theorem 2.1 is only the part concerning
the estimates (2.10). Corresponding estimates are now

‖ψ1‖2
H 1

0
= (−�ψ1, ψ1) = (−b · ∇u⊥, ψ1)

≤ Cb‖u⊥‖H 1
0
‖ψ1‖L2

≤ CbCpα‖ψ1‖H 1
0
,

which proves the corollary. ��

Now our next purpose is the estimation of the operator norm ‖(I − A)−1‖H 1
0

cor-

responding to the norm for L−1 : H−1 → H 1
0 .

Theorem 2.2: Under the same assumptions in Theorem 2.1, provided that

κ ≡ C0h(C3M(C1 + C2)h+ C4) < 1,

then the following estimation holds:

‖(I − A)−1‖H 1
0

≤ ‖R + S‖
1
2
E =: M, (2.16)

where the 2 × 2 matrices R, S are defined by

S =
[

s2
h shs⊥h

shs⊥h s2
⊥h

2

]
, R =

[
r2
hh

2 rhr⊥h
rhr⊥h r2

⊥

]
.

Here, (sh, s⊥), (rh, r⊥) are given as follows:

sh = M[rh(C1 + C2)h
2 + 1], s⊥ = Mr⊥(C1 + C2),

rh = C0C3Mr⊥, r⊥ = 1/(1 − κ).

Proof: Let ψ be an arbitrary element in H 1
0 (�). Then, by the Fredholm alterna-

tive theorem, the invertibility of (I−A) implies that there exists a unique element
u ∈ H 1

0 (�) satisfying (I−A)u = ψ . When we set

Nhu := Phu− [I − A]−1
h Ph((I − A)u− ψ),

T u := Nhu+ (I − Ph)(Au+ ψ),

it is readily seen that (I − A)u = ψ is equivalent to T u = u. Using the unique
decompositions u = uh + u⊥ and ψ = ψh + ψ⊥ in H 1

0 (�) = Sh ⊕ S⊥
h , by some

simple calculations, we have

uh = [I − A]−1
h (PhAu⊥ + Phψ),

u⊥ = (I − Ph)A(uh + u⊥)+ (I − Ph)ψ.
(2.17)
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Hence, taking notice of M = ‖[I − A]−1
h ‖H 1

0
and the estimates in the proof of

Theorem 2.1, we have

‖uh‖H 1
0

≤ M‖PhAu⊥ + Phψ‖H 1
0

≤ M(C1 + C2)h‖u⊥‖H 1
0

+M‖Phψ‖H 1
0
, (2.18)

‖u⊥‖H 1
0

≤ ‖(I − Ph)A(uh + u⊥)‖H 1
0

+ ‖(I − Ph)ψ‖H 1
0

≤ C0h(C3‖uh‖H 1
0

+ C4‖u⊥‖H 1
0
)+ ‖(I − Ph)ψ‖H 1

0
. (2.19)

Substituting the estimate of ‖uh‖H 1
0

in (2.18) for the last right-hand side of (2.19)

and solving it with respect to ‖u⊥‖H 1
0
, we get

‖u⊥‖H 1
0

≤ (C0C3hM)/(1 − κ)‖Phψ‖H 1
0

+ 1/(1 − κ)‖(I − Ph)ψ‖H 1
0

= rhh‖Phψ‖H 1
0

+ r⊥‖(I − Ph)ψ‖H 1
0
. (2.20)

Thus we also have by (2.18)

‖uh‖H 1
0

≤ M(C1 + C2)h
(
rhh‖Phψ‖H 1

0
+ r⊥‖(I − Ph)ψ‖H 1

0

)
+M‖Phψ‖H 1

0

≤ M
[
rh(C1 + C2)h

2 + 1
]
‖Phψ‖H 1

0
+Mr⊥(C1 + C2)h‖(I − Ph)ψ‖H 1

0

= sh‖Phψ‖H 1
0

+ s⊥h‖(I − Ph)ψ‖H 1
0
. (2.21)

Therefore, we obtain the desired conclusion from (2.20) and (2.21). ��

Moreover, we have the following estimates corresponding to Corollary 1.

Corollary 2: Under the same assumption as in Corollary 1, if

κ̂ ≡ C0h(C3M(Ĉ1 + C2h)+ C4) < 1,

then

‖(I − A)−1‖H 1
0

≤ (R̂2 + Ŝ2)
1
2 =: M̂. (2.22)

Here, R̂ and Ŝ are defined as

R̂ := (C0C3hM + 1)/(1 − κ̂) and Ŝ := {(Ĉ1 + C2h)R + 1}M.

We now note that the following a priori estimate of the solution to (1.1) is obtained.

Theorem 2.3:

‖u‖H 1
0

≤ ‖(I − A)−1‖H 1
0
‖g‖H−1 .

Particularly,

‖u‖H 1
0

≤ Cp‖(I − A)−1‖H 1
0
‖g‖L2 for g ∈ L2(�).
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Indeed, defining ψ := −�−1g, then taking account that (I−A)u = ψ and that

‖ψ‖2
H 1

0
= (∇ψ,∇ψ)〈−�ψ,ψ〉 = 〈g,ψ〉 ≤ ‖g‖H−1‖ψ‖H 1

0
,

where 〈·, ·〉 stands for the duality pairing in H 1
0 (�). The second part follows from

the Poincaré inequality.

3. Applications

In this section, we mention about the actual applications of the results obtained in
the previous section to the verification of solutions for nonlinear elliptic problem
(1.2). We assume that the nonlinear map f (u) ≡ f (·, u,∇u) fromH 1

0 (�) intoL2(�)

is continuous and bounded.

3.1. Preliminary

In this subsection, we transform the original boundary value problem (1.2) into the
so-called residual equation by using an approximate solution ûh ∈ Sh ⊂ H 1

0 (�)

defined by

(∇ûh,∇φh) = (f (ûh), φh), ∀φh ∈ Sh. (3.1)

For the effective computation of the solution for (3.1) with guaranteed accuracy,
refer, for example, [1], [11] etc.

Next, we define the ū ∈ H 1
0 (�) ∩H 2(�) by the solution of Poisson’s equation

−�ū = f (ûh) in �,

ū = 0 on ∂�.
(3.2)

Further, let define residues by

u− ûh = (u− ū)+ (ū− ûh), w := u− ū, v0 := ū− ûh. (3.3)

Note that v0 is an unknown function but its norm can be computed by an a pri-
ori and a posteriori techniques (e.g., see [5], [13]). Thus, using the residues in (3.3),
concerned problem is reduced to the following residual form :

−�w = f (w + v0 + ûh)− f (ûh) in �,

w = 0 on ∂�.
(3.4)

Hence, denoting the Fréchet derivative at ûh by f ′(ûh), the Newton-type residual
equation for (3.4) is written as

−�w − f ′(ûh)w = gr(w) in �,

w = 0 on ∂�,
(3.5)

where gr(w) ≡ f (w + v0 + ûh)− f (ûh)− f ′(ûh)w.
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In the above, we assumed that the approximate solution ûh is defined as an element
in H 1

0 (�), i.e., C0-element. When we use the function satisfying ûh ∈ H 2(�), i.e.,
C1-element, we can get more simpler residual Newton-type equation without v0 of
the form

−�w − f ′(ûh)w = gd(w) in �,

w = 0 on ∂�,
(3.6)

where w := u − ûh and gd(w) := f (w + ûh) + �ûh − f ′(ûh)w. For another type
of simple residual formulation for C0-element, refer [4] or [10] in which some H−1

arguments are effectively used.

3.2. Verification Conditions

We now write down again the nonlinear boundary value problem of the form:

Lw ≡ −�w − f ′(ûh)w = g(w) in �,

w = 0 on ∂�,
(3.7)

where g(w) ≡ gr(w) or g(w) ≡ gd(w). If L is invertible, then (3.7) is rewritten as
the fixed point form

w = F(w)
(
≡ L−1g(w)

)
. (3.8)

Notice that the Newton-like operator F in (3.8) is compact on H 1
0 (�) from the

assumptions on f , and that it is expected to be a contraction map on some neighbor-
hood of zero.

Therefore, we consider the set, which we often refer as the candidate set, of the form
Wα ≡ {w ∈ H 1

0 (�) : ‖w‖H 1
0

≤ α}.
First, for the existential condition of solutions, we need to choose the setWα, which
is equivalent to determine a positive number α, satisfying the following criterion
based on the Schauder fixed point theorem:

F(Wα) ⊂ Wα. (3.9)

And next, for the proof of local uniqueness within Wα, the following contraction
property is needed on the same set Wα in (3.9):

‖F(w1)− F(w2)‖H 1
0

≤ k‖w1 − w2‖H 1
0
, ∀w1, w2 ∈ Wα, (3.10)

for some constant 0 < k < 1. Notice that, in the above case, the Schauder fixed point
theorem can be replaced by the Banach fixed point theorem, which might yields an
advantage if we apply our method to noncompact problems.

For (3.9), from Theorem 2.3, a sufficient condition can be written as

‖F(Wα)‖H 1
0

≡ sup
w∈Wα

‖F(w)‖H 1
0

≤ M1 sup
w∈Wα

‖g(w)‖L2 ≤ α, (3.11)
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where M1 ≡ CpM, and M is the norm of the operator L−1 : H−1 → H 1
0 defined

in Theorem 2.2.

On the other hand, for the verification of local uniqueness condition (3.10) on Wα,
in general, we use the following deformation:

g(w1)− g(w2) = 
(w1, w2)(w1 − w2),

where 
(w1, w2) denotes a function in w1 and w2, for example, if g(w) = w2,
then 
(w1, w2) = w1 + w2. Therefore, Condition (3.10) reduces to find a constant
0 < k < 1 satisfying the inequality of the form

M1‖
(w1, w2)(w1 − w2)‖L2 ≤ k‖w1 − w2‖H 1
0
, ∀w1, w2 ∈ Wα. (3.12)

4. Numerical Examples

Example 4.1 (Emden’s equation):

−�u = u2 in �,

u = 0 on ∂�.
(4.1)

In this case, L and g(w) in (3.7) are given as follows:

Lw ≡ −�w − 2ûhw,

gr(w) ≡ w2 + 2v0w + v2
0 + 2ûhv0. (4.2)

Therefore, for the candidate set Wα = {w ∈ H 1
0 (�) : ‖w‖H 1

0
≤ α}, Condition (3.11)

is given by

M1 sup
w∈Wα

‖w2 + 2v0w + v2
0 + 2ûhv0‖L2 ≤ α. (4.3)

By (4.3) and some calculations using the several kinds of norms, e.g., [4], [13] etc.,
we obtain the existential condition (3.11) of the form:

M1(K2α
2 +K1α +K0) ≤ α, (4.4)

whereKi, 0 ≤ i ≤ 2, are constants dependent on the norms of ûh and v0. It implies
that, for any positive number α satisfying the quadratic inequality (4.4), there exists
at least one solution in the set of the form ûh + v0 +Wα. Note that such an α exists
if and only if M1(K1 + 2

√
K0K1) ≤ 1. Also, notice that a sufficient condition cor-

responding to the relation (3.12) can be similarly and readily treated, and it leads
to a simple linear inequality in α such that M1(2K2α + K1) < 1. Thus, we can
determine two bounds for α, i.e., αE and αU , for which we assure the existence and
the uniqueness of solutions, respectively. Table 1 shows the computational results
for the domain� = (0, 1)× (0, 1) using piecewise quadratic C0 finite element space
Sh with several mesh sizes. Then the contantC0 in (2.1) can be taken as 1/2π ([5]). In
Table 1, “smallest αE” and “largest αU” indicate the smallest and the largest bounds
α satisfying the verification conditions (3.11) and (3.12), respectively.
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Table 1. Verification results for Example 4.1

1/h M1 K2 K1 K0 smallest αE largest αU

5 1.5752 1/π2 0.2441 4.0418 fail 1.9278363
10 0.7521 1/π2 0.0483 0.5195 0.4194762 6.3223191
20 0.6485 1/π2 0.0088 0.0635 0.0415689 7.5651910

1/h M C1 C2 C3 C4 ‖v0‖
H1

0

5 2.7265 0 2.1124 13.2729 1.8770 2.0748884
10 2.7455 0 2.1103 13.2594 0.9375 0.5480243
20 2.7467 0 2.1025 13.2106 0.4670 0.1356515

Example 4.2 (Burgers equation):

�u = λ(u · ∇)u in �,

u = ϕ(x, y) on ∂�,
(4.5)

where λ is a parameter and ϕ(x, y) ≡ 1
2
xy(1 − y).

In this case, we consider a modified candidate set of the form

Wα ≡
{
w ∈ H 1

0 (�) ∩ L∞(�) : max{‖∇w‖L2 , ‖w‖∞} ≤ α
}
. (4.6)

Namely, we enclose the solution of (4.5) in the Banach space X ≡ H 1
0 (�) ∩ L∞(�)

with norm ‖w‖X ≡ max{‖∇w‖L2 , ‖w‖∞}. Further we need the inverse norm esti-
mates in the following L∞ sense:

‖v‖L∞ ≤ M∞‖Lv‖L2 , ∀v ∈ H 2(�) ∩H 1
0 (�),

where M∞ can be computed by using M1 in Sect. 2 and the constructive approach
to the imbedding theory described in [8], [9].

Thus, the condition for existence is written as

max(M1,M∞) sup
w∈Wα

‖g(w)‖L2 ≤ α. (4.7)

Then, the linearized operator L and the right-hand side g(w) of (3.7) are as follows:

Lw ≡ −�w + (ûh · ∇)w + (w · ∇)ûh,
gr(w) ≡ −λ [

((w + v0) · ∇)(w + v0)+ (ûh · ∇)v0 + (v0 · ∇)ûh
]
. (4.8)

The verification conditions usingα are similarly represented as in the previous exam-
ple. That is, corresponding to the condition (4.4), it also leads to the inequality in
α of the quadratic form such that c2α

2 + c1α + c0 ≤ α, where ci, 0 ≤ i ≤ 2,
are constants determined similarly as Ki in the previous example. Particularly, for
the efficient computations, we used the L∞ residual method for v0 ([5]). And the
uniqueness condition is also similarly given as before. The verification results for the
parameter λ = 10 are shown in Table 2 with the same domain� and approximation
subspace Sh as before.
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Table 2. Verification results for Example 4.2 for λ = 10

1/h M1 M∞ c2 c1 c0 smallest αE largest αU

5 0.2674 0.6373 10
√

2 0.2253 0.0100 0.0081600 0.0475085
10 0.2444 0.5981 10

√
2 0.0596 0.0023 0.0015055 0.0569962

20 0.2344 0.5811 10
√

2 0.0144 0.0005 0.0003238 0.0603275

1/h M C1 C2 C3 C4 ‖v0‖
H1

0
‖v0‖∞

5 1.0029 0.5013 0.2194 3.1499 1.9662 0.0047170 0.0112155
10 1.0030 0.5030 0.2211 3.1609 1.8694 0.0012529 0.0029667
20 1.0030 0.5036 0.2220 3.1644 1.8187 0.0003013 0.0007184

Remark 3: The computational efficiency of the above results, in Example 4.1, was
almost similar to that the existing methods up to now, e.g., comparing with [13]. But,
the determination of the range for existence and/or uniqueness as shown in the tables
might be impossible for those methods up to now. Particularly, we can find rather wide
range which contains no solutions. For example, from Tables 1 and 2, we can conclude
that there are no solutions at all forα in [0.04157, 7.56519] and in [0.0003238, 0.06032],
respectively. This property should be useful and powerful for the purpose to prove the
nonexistence theorem in various kinds of problems.

Remark 4: For the present cases, we separately verified the existence and uniqueness
by the criteria (3.9) and (3.10), respectively. We can also use another method to prove
them simultaneously. Namely, the condition

F(0)+ F ′(W)W
◦⊂ W

is satisfied for the candidate set W , then it implies that a locally unique solution is
enclosed in W([14]).

Remark 5: All computations in Tables 1 and 2 are carried out on a Dell Latitude C400
Intel Pentium Mobile CPU 866MHz by using INTLAB 4.1.2, a tool box in MATLAB
6.5.1 developed by Rump [11] for self-validating algorithms. Therefore, all numerical
values in these tables are verified data in the sense of strictly rounding error control.
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