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Abstract
We propose an e�cient method for validated computing of the solution of linear elliptic

problem with a parameter. A numerical method to obtain the k-th eigenvalue of given
symmetric matrices is also developed. We present some numerical examples which concern
with the problem to determine a constant appearing in error estimation of the Finite Element
Method (FEM).
1. Introduction

We consider the following linear elliptic equation de�ned on a bounded convex polygonal
domain 
 � R2. 8><

>:
�4u = �(u+ g) in 
;

@u

@n
= 0 on @
:

(1)

Our aim is to obtain numerically a weak solution u 2 X with guaranteed accuracy for a given

g 2 L20(
) and a parameter �, whereX := H1(
)
T
L20(
), L

2
0(
) := fv 2 L2(
)j

Z



vdx = 0g

and 0 < � < a. The positive constant a is taken so that � should not be an eigenvalue of
the Laplacian �4 with Neumann boundary condition. Then the operator �4 � � is one
of the Fredholm operators with index=0, and the equation (1) has a unique solution within
0 < � < a.

This problem appears in computation of the constant related to the error estimates of
FEM with linear triangular elements.

Since (1) is linear, validated computaion will be done rather easily, e.g. [6],[4]. But in the
case where the parameter � continuously varies in some interval, the cost of computation
may considerably grow. In this paper, we propose a method of e�cient computation for
changing parameters.
2. Outline of the validated computation for the problem (1)

First, we give an outline of our method for validated computation of the solution of (1):

1. Let Sh � H1(
) be a �nite element space and Ph be a projection from X to Sh

T
L20(
)

as follows:

(rPhu;rvh) = (ru;rvh); 8vh 2 Sh;

(Phu; 1) = 0;



where ( � ; � ) is the L2 inner product. Moreover, let us take (r� ;r� ) as an inner
product of X, and put S?h as the orthogonal complement of Sh

T
L20(
) with respect

to that inner product.

We assume that Sh has the following approximation property for the Poisson equation
with f 2 L20(
) in the right-hand side. Namely, for the solution v of

8><
>:
�4v = f in 
;

@v

@n
= 0 on @
;

and its projection Phv, it holds that

kr(I � Ph)vk � C0hkfk;(2)

where k � k means the L2-norm, h a parameter of Sh concerning the mesh size, and C0

a constant independent of h.

2. Let (�4)�1 be an inverse operator of �4 with the Neumann boundary condition.
Then the equation (1) is represented of the following �xed point form:

u = (�4)�1(�(u+ g)):

We can write this as follows：(
Phu = Ph((�4)�1(�(u + g)))
(I � Ph)u = (I � Ph)((�4)�1(�(u+ g)))

(3)

The �rst equation of the above is equivalent to：

(rPhu;rvh)� �(Phu; vh) = �((I � Ph)u+ g; vh);

8vh 2 Sh:

Then we de�ne a mapping

Rh : L20(
) 3 f 7! Rhf 2 Sh

\
L20(
)

by

(rRhf;rvh)� �(Rhf; vh) = (f; vh);(4)

8vh 2 Sh:

Notice that we can verify that Rhf is well de�ned through showing in actual compu-
tation that the corresponding matrix is nonsingular. Using Phu = �Rh((I � Ph)u+ g)
and (3), we de�ne the operator T by:

T (u) := �Rh((I � Ph)u+ g) + (I � Ph)(�4)�1(�(u+ g)):

Then (1) turns to be equivalent to a �xed point equation on X, that is, u = T (u).



3. Since the operator T is a bounded continuous a�ne mapping on H1, and moreover it
is compact, if we �nd a bounded closed convex set U � X such that T (U) = fT (u)ju 2
Ug � U holds, then there exists a solution u 2 T (U) of u = T (u) by Schauder's �xed
point theorem. Taking convex sets Uh � Sh

T
L20 and U?

h � S?h (� X), we de�ne the
set U by U = Uh � U?

h , which is usually referred as the candidate set. Then it is
su�cient for our purpose to show that(

PhT (U) � Uh

(I � Ph)T (U) � U?
h ;

which we call the veri�cation condition.

4. We de�ne the set Uh and U?
h as follows:

For a given � > 0,

U?

h := fu?h 2 S?h j kru
?

h k � �g(5)

Uh := fuh 2 Sh

\
L20 j uh = �Rh(v + g); v 2 U?

h g:(6)

From this de�nition, if

(I � Ph)T (U) � U?

h(7)

holds, then PhT (U) � Uh also holds. Applying (2) to (7), we obtain a su�cient
condition for the veri�cation.

Theorem 1
For the candidate set U which is constituted of U?

h and Uh satisfying (5) and (6),
respectively, if

C0h� sup
u2U

ku+ gk � �(8)

holds, then there exists a solution u 2 U of u = T (u).

In this case, the solution is unique (globally) because the problem (1) has a unique
solution for 0 < � < a.

3. Validated computaion for the operator Rh

In order to de�ne � and the set U so that the above condition (8) holds, we have to
calculate the image of Rh with guaranteed accuracy. In the following, we propose a method
to calculate Rhf without so much cost when the parameter � varies continuously in some
interval.

Take f�igi=1;���;n as a basis of the �nite elelment subspace Sh. Then, from (4), we represent
Rhf =

X
i=1;���;n

xi�i by using the solution ~x = (x1; x2; � � � ; xn)
T of the following linear system:

G�~x = ~f;

where

G� = D � �L;

D = ((r�i;r�j))i;j=1;���;n;

L = ((�i; �j))i;j=1;���;n



are n� n matrices, and ~f is a vector such that

~f = ((f; �1); (f; �2); � � � ; (f; �n))
T :

To solve this system with validated computation, here we adopt the method by Rump [5]
in which the smallest singular value �� of G� is used. Note that �� is equal to the smallest
absolute value of the eigenvalues of G� because of the symmetry of G�.

We assume that � belongs to an interval �, with the center �� and the width �, and that
the vector ~f in the right-hand side also belongs to an interval valued vector, which has the
center vector �f and the width vector [~f ].

Let ~x be an approximate solution of G�1��
�f , obtained by oating point arithmetic. Since

the di�rernce of ~x from ~x is written as

~x� ~x = G�1� ((~f � �f) + �f �G��~x+ (�� ��)L~x);

we have

k~x� ~xk � kG�1
� k2(

1

2
k[~f ]k + k �f �G��

~xk+
�

2
kL~xk)

�
1

�0
(
1

2
k[~f ]k+ k �f �G��~xk+

�

2
kL~xk);

where

�0 = inf
�2�

��:

Here, k � k stands for the usual Euclidian norm, and k � k2 for 2-norm of matrices induced by
the Euclidian norm.

In this way, an error of the approximate solution ~x can be obtained with guaranteed
accuracy through rigorous calculation of the right-hand side of the above inequality.
4. Estimation of the smallest singular value of G�

Since the smallest singular value �� equals the smallest absolute value of the eigenvalues,
we have to compute the minimum absolute eigenvalue for � over the interval �, which takes
considerable costs. Therefore, we try to estimate �� by some explicit functions of �.

Let �1 and �2 be the �rst and the second smallest eigenvalue of G�, respectively. Since
(1) is a Neumann problem, the matrix D which corresponds to the Laplacian is nonnegative
and 0 is the smallest eigenvalue. Actually,

D~1 = 0;(9)

where ~1 = (1; 1; � � � ; 1)T .
In what follows, we restrict � within a range 0 < � < b in which the matrix G� is not

singular. Then, from (9) and the positive de�niteness of L,

�1 < 0 < �2

holds. Thus one of �1 and �2 which has the smallest absolute value gives the smallest singular
value.



First, we estimate an upper bound of �1. Since this is the smallest eigenvalue of G�,
from (9) and the symmetry of G� , we have

�1 � �
~1TL~1

k~1k2
�(10)

=: ��1(�):

Next, we estimate a lower bound of �2 using the following lemma obtained by Weyl :
Lemma 1
Let A, B and C be real symmetric matrices with the size n such that A = B+C holds. De�ne
�i(A), �i(B) and �i(C), (i = 1; � � � ; n) as the eigenvalues of A, B and C, respectively, where
the index i means the order of magnitude (�1 is the smallest). Then

�i(B) + �1(C) � �i(A) � �i(B) + �n(C)(11)

and

j�i(A)� �i(B)j � kCk2(12)

hold.
The proof is given by an elementary consideration on linear algebra. See [2], for example.
If, in the �rst inequality (11), we take i = 2, A = D, B = G�, and C = �L, then we have

a lower bound of �2 by

�2 � �2 � �kLk2:(13)

Here, �2 denotes the second smallest eigenvalue of the matrix D. In the actual calculations,
kLk2 is overestimated by kLk1, the in�nity norm of the matrix L. Thus de�ning

�2(�) := �2 � �kLk1;

we obtain a lower bound of the smallest singular value by

�� � min(�1(�); �2(�)):

5. Validated computation of the second eigenvalue of the matrix D
In order to apply the argument in the previous section to our problems, we have to

calculate the second eigenvalue of the matrix D with guaranteed accuracy. In this section,
we show a new method to obtain a bound of an eigenvalue of a symmetric matrix as well as
to decide the index of the eigenvalue in order of magnitude. First, a lemma concerning the
number of nonnegative eigenvalues is described.
Lemma 2
Let A be an arbitrary real symmetric matrix and can be decomposed as

A = MTBM;

with a symmetric matrix B and a nonsingular matrix M . Then the matrices A and B have
the same numbers of nonnegative eigenvalues.

The proof is omitted because the lemma is easily derived from Sylvester's law of inertia.



Using Lemma 2 and (12) in Lemma 1, we have a numerical method to estimate eigenvalues
and to decide the orders of them as follows :
Theorem 2
Let A be an arbitrary symmetric matrix and ~� be an approximation to an eigenvalue of A.
Taking positive numbers �1 and �2, de�ne

Y1 := A� (~�� �1)I

and

Y2 := A� (~�+ �2)I;

where I is the identity matrix. For Yi, i = 1; 2, take a diagonal matrix Bi and a nonsingular
matrix Mi, and compute the following quantities rigorously:

"1 := kY1 �MT
1 B1M1k2

and

"2 := kY2 �MT
2 B2M2k2:

Let B1 and B2 have k�1 and k+r negative elements, respectively, with k > 0 and r � 0.
Then there exist from the k-th to the (k + r)-th eigenvalue within an interval

[~�� �1 � "1 ; ~�+ �2 + "2]:

Proof
From Lemma 2, MT

1 B1M1 and M
T
2 B2M2 have k� 1 and k+ r negative eigenvalues, respec-

tively. Let �k be the k-th eigenvalue of Y1. If �k < �"1, then MT
1 B1M1 should have more

than k negative eigenvalues because of Lemma 1. Thus it is necessary that �k � �"1 holds.
From �k = �k � (~�� �1), we obtain a lower bound of �k as follows :

~�� �1 � "1 � �k:(14)

Let �k+r be the k + r-th eigenvalue of Y2. We know �k+r < "2 from Lemma 1, and using
�k+r = �k+r � (~�+ �2), obtain an upper bound of �k+r:

�k+r � ~�+ �2 + "2:(15)

2

In the actual calculations, we use, for example, LDLT -decomposition of Yi, and 1-
norm instead of 2-norm. Using this method, we can do validated calculation of the second
eigenvalue of the matrix D.
6. Numerical examples

In this section, we show some numerical examples on the following problem which appears
in the computation of the constant in the error estimation of FEM with linear triangular
elements: 8>>>>><

>>>>>:

�4u = �(u+ g) in 
;

@u

@n
= 0 on @


g =
1

2
((1� x)2 + y2)�

1

3
;

(16)



where 
 is the standard triangle with vertices (0; 0), (1; 0) and (0; 1). We use a uniform
triangular mesh with linear elements for the �nite element subspace Sh. The parameter h is

taken as
1

n
, where n means the number of partition of the edge. In the examples here, we

take n = 40. The range of � for which the problem (16) has a unique solution is 0 < � < �2,
and our calculation is done for 1:5 � � � 4:0. We show results for n = 40 with taking
C0 = 4:9389492� 10�1 and �1 = �2 = 1:0� 10�6.

The second engenvalue of the matrix D is obtained as

�2 2 [0:5448499001� 10�2; 0:5450499007� 10�2]:

The in�nity norm of L is:

kLk1 2 [0:625000000000102� 10�3; 0:625000000000104� 10�3];

and

~1TL~1

k~1k2
2 [0:580720092914863� 10�3; 0:580720092915615� 10�3]:

From these, we can take �1 as a lower bound of the smallest singular value of G� for 0 <
� < 8:717598.

Table 1. Validated results for (16)
� �0 � relative error of the solution

[1:5; 2:0] 0:8710802� 10�3 4:2093907� 10�3 17:6579209� 10�2

[2:0; 2:5] 1:1614402� 10�3 5:2870586� 10�3 13:3700798� 10�2

[2:5; 3:0] 1:4518003� 10�3 6:3905212� 10�3 10:8107669� 10�2

[3:0; 3:5] 1:7421603� 10�3 7:5237493� 10�3 9:1117521� 10�2

[3:5; 4:0] 2:0325204� 10�3 8:6927330� 10�3 7:9009187� 10�2

[3:0; 3:2] 1:7421603� 10�3 6:8084311� 10�3 3:8701039� 10�2

[3:2; 3:4] 1:8583043� 10�3 7:2644782� 10�3 3:6672089� 10�2

[3:4; 3:6] 1:9744484� 10�3 7:7261107� 10�3 3:4885805� 10�2

[3:6; 3:8] 2:0905924� 10�3 8:1938205� 10�3 3:3299602� 10�2

[3:8; 4:0] 2:2067364� 10�3 8:6681660� 10�3 3:1879869� 10�2

[3:5; 3:6] 2:0325204� 10�3 7:7183901� 10�3 1:9088204� 10�2

[3:6; 3:7] 2:0905925� 10�3 7:9517124� 10�3 1:8733604� 10�2

[3:7; 3:8] 2:1486644� 10�3 8:1866387� 10�3 1:8398176� 10�2

[3:8; 3:9] 2:2067364� 10�3 8:4232425� 10�3 1:8080145� 10�2

[3:9; 4:0] 2:2648084� 10�3 8:6616026� 10�3 1:7777932� 10�2

The relative errors are estimated by ku� uhk2=kuhk2, where uh := ��Rhg.
We used INTLIB_90[3] in the numerical experiments, a library for interval arithmetic

with consideration of the inuence of rounding error.
Used machines are Sun Ultra Enterprise 450(single CPU). The details are shown in

Table 2.



Table 2. Speci�cation of numerical environment
Ultra Enterprise 450

OS SunOS 5.5.1
software WorkShop Compiler Fortran 90 1.2
CPU UltraSPARC-II 300MHz

7. Conclution
We proposed a new veri�cation method for parametrized elliptic problems, and showed

an application to a problem which appears in the computation of the constant in the error
estimation of FEM. Moreover, we developed a new method to obtain a range of the k-th
eigenvalue of a symmetric matrix.

As concerns the latter method, though it works in this case, there may be critical cases
where the LDLT -decomposition causes some considerable error and the obtained range of
the eigenvalue is too large. We are now improving the method in order that it can be applied
to arbitrary symmetric matrices with su�cient accuracy.
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