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1 Introduction

We consider a numerical technique to enclose the exact solution with guaranteed error bounds
for nondifferentiable nonlinear elliptic equations of second order. Our method is a kind of
Newton-like method using an enclosing technique combined with the explicit error estimate for
finite element approximations. In [1], we proposed a verification procedure which improves the
original one in [2], and we presented some numerical examples to confirm the better convergence
property, for example, the verified solutions for an equation appeared in the mathematical
biology.

In this paper, we extend the verification procedure presented by [1] to nondifferentiable
nonlinear elliptic problem related to MHD equilibria, and we construct a computing algorithm
which automatically encloses the solution with guaranteed error bounds.

In the following section, we formulate a numerical verification method for a parametrized
nonlinear nondifferentiable elliptic problem. This formulation is based on the infinite dimen-
sional fixed point theorem using the Newton-like operator and the error estimates for finite
element approximations. In Section 3, we introduce two concepts, rounding and rounding er-
ror, to deal with the infinite dimensional operator in a computer. The rounding is computed
by solving the linear system of equation with interval righthand side. As for the rounding error
mainly consists of the bounding of arithmetic expressions. And in Section 4, we construct a
concrete computing algorithm for the verification in computer, which is an efficient computing
algorithm from the view point of interval arithmetic. Finally, some numerical examples are
presented in Section 5 and Section 6 for one and two dimension cases, respectively.

2 Problem and fixed point formulation
We consider the following nonlinear elliptic problem:

—Av = vt in €,
{ v = -1 on OS2, (1)

where A is the Laplace operator,  a bounded and convex domain in R"(1 < n < 3) with
piecewise smooth boundary 9, A > 0 a real parameter, and ¢+ = max{0,t}.



(1) arises in equilibrium analysis of confined MHD (magnetohydrodynamics) plasmas in an
infinite cylindrical domain, which is a simplification of the so-called Grad-Shafranov equation.
Roughly speaking, v and 2 correspond to the magnetic flux function and the region enclosed
by a conducting shell, respectively. Another example is the equilibrium of a thin stretched
membranes partially covered with water ([3]). Clearly, the function v(z) = —1, x €  satisfies
(1) for all A, and we will seek other non trivial solutions.

Remark 1. If v(x) is a nontrivial solution of (1) for some A, in a domain Q, = {x € Q; v(z) >
0}, w = v|g, is an eigen function of —Aw = Aw in €,, w = 0 on 9€,. Then (1) may be
considerd a nonlinear eigenvalue problem, and the portion of  where v(z) = 0 can be regarded
as a free boundary corresponding to the boundary of plasmas.

In order to apply the formulation presented by [1], we set v =u — 1, f(t) = (t —1)", and
consider the following equivalent problem.

—Au = Af(u) in €,
{ v = 0 on Of2. (2)

Here, let H™(Q2) denote m-th order L?-Sobolev space on 2, and set
HI(Q)={ve H(Q)|v=0 on 90}

The inner product on H}(Q) is defined as (Vu, Vo), where (-, -) is the L*(Q2)-inner product,

0 0
and set Vu = (a—u,...., 8u
I Ty

). The nonlinear real-valued function f(-) satisties the following

properties.

LEMMA 1. f is the continuous map from HE () t
Proof. Yu,v € Hy(Q), and Q; = { z € Q ; u(x)
Lo(z) <1}, Qi ={2€Q; uz) <1lvz)>1},
of f:

1 () = fFliay = l(w—=1) = (v = DL, + llu = Uiz, + llv = 172y

[l = vllT20,) + 11(w = 1) = (v = DTz, + 10 = 1) = (u = D|[720,)

|Ju — U”%?(Q)' u

o L*(Q).
> lLo(z)>1} Q={zeQ; ulx) >
following inequalities imply the continuity

IN N

LEMMA 2. For each bounded subset U in H(2), f(U) is also bounded in L*(2).

Proof is quite similar to Lemma 1.

To verify the existence of a solution of (2) in a computer, we use the fixed point formulation.
First, we rewrite (2) in the weak form:

find we Hy(Q)NnH*(Q) st. (Vu,Vo)=Xf(u),v), VYve H Q). (3)
It is well known that for any ¢ € L*(€2), the boundary value problem:

—A¢p =1 inQ, ¢=0 on 0N (4)
has a unique solution ¢ € H}(Q) N H*(2) and the following estimate holds

| & |m2() < Cil|¥] 2. (5)



where Cy is a positive constant independent of 1, and | - |g2(q) implies the H*(Q2)-seminorm
defined by [u|fpiq) = X7y [[(07u)/(82;%)[[72(q)- For each ¢ € L*(Q), let Ay be the solution
of (4). Then A is the compact operator from H, () to L*(€2). Therefore, from Lemma 1 and
Lemma 2, the nonlinear operator F' = A\f is a compact operator on H;(Q), and the weak
solution of (3) can be rewritten as the fixed point form:

u = Fu.

Now, we will introduce a Newton-like method for the above equation. However, due to the
non-smoothness of the nonlinear term f(u), we can not directly apply the formulation proposed
by [1]. We need an extension of the derivative of f, and a suitable modification of the Fréchet
derivative of F'. Let us introduce an extended derivative f’ to IR by

1 t>1,
fl)y=< ¢ t=1,
0 t<1.

where £ is a given fixed finite value. Since f'(u)w € L*(Q) for all u,w € H'(Q), we can define
the linear operator S(u) on Hy(£2) for each u € H}(Q) satisfying

(VS(uw)w, Vo) = A f (v)w, v), Vw,v € Hy(9Q).

We call S(u) as the Fréchet-like derivative of F' at u, and write F'(u) = S(u) from now on.

Next, let S, be an appropriate finite element subspace of H;(£2) dependent on a parameter
h (0 <h<1)and u, € S, an approximate solution to (3). Further, let P, be an orthogonal
projection from Hj(2) into Sy, in Hj(Q2)-sense determined by

(V(u— Pyu), Vo) =0, Vv € S (6)
We assume that, as in [1], [2] etc.,

ASSUMPTION 1.  The restriction of the operator P, (I — F'(uy)) : Hi(2) — Sy, to Sy, has the
inverse operator [I — F'(uy)],t : Sp — Sh, where I denotes the identity map on H( ().

In practice, above assumption is equivalent to the regularity of an matrix G' which will be
introduced in Section 4, therefore, we can check the assumption in the computational process
of verification procedure.

Next, for a small parameter € (0 < & < 1), we define the nonlinear operator T. on H}(Q) by

Tou={IT—([1-F(u)];'Pn+el )(I-F) }u. (7)

Note that if the operator [ I — F'(uy) |, ' P, + €I is invertible, then the two fixed point forms,
w = Fu and u = T,u are equivalent. We can easily show that the operator 7. is a condensing
operator, and under the Assumption 1, if there exists a non-empty, bounded, convex and closed
set U in H}(Q) satisfying T.U C U, then T, has a fixed point u in U by Sadovskii’s fixed point
theorem.

3 Computable verification condition

The following descriptions are almost the same as in [1]. But, in order to keep the paper self-
contained, we present those results. We define two concepts, the rounding and the rounding
error which enable us to treat the infinite dimensional problem in a computer. Let P, be the



H}-projection defined by (6), and let T. = P,T.. For a set U € H}(f2), we define the rounding
R(T.U) as .
RT.U)={ve S, |v=Twu, ueU}.

Next, we assume, as the approximation property of P, that

ASSUMPTION 2. |lu — Phu||Hé(Q) < Chyhlu|p2(qy, VYu € Hy(2) N H*(Q), where C, is a
positive constant independent of v and h which can be numerically determined.

This assumption holds for many finite element subspace of piecewise linear polynomials with
quasi-uniform partition ([4]). Then, for oo = sup||T.u — T5u||Hé(Q) and C' = C,Cy, we define the
uelU
rounding error RE(T.U) as

RE(T.U) = {$ € St | 6l < @ and [|¢llp2) < Chal,

where S;- means the orthogonal complement of S;, in HZ(€).
Now, we have the following computable verification condition. The proof is similar to that
in [2].
LEMMA 3. Let U C Hj(f2) be a non-empty, bounded, convex, and closed subset such that
for some € (0 < e < 1),
R(T.U) & RE(T.U) C T, (8)
then there exists a solution of w = Fu in U. Here, & denotes the direct sum in the sense of

H}(Q) and M, C M, implies M; C]\%z for any sets M, M.

Next, we propose a computer algorithm to construct the set U which satisfies the verification
condition (8). Let u; € Sy, be a given approximation of the solution to (3), {¢;}}, a basis of the
finite element subspace S}, where M = dim Sj,, and let IR be the set of all closed intervals of
IR. Moreover, let Sy, ; be the set of all linear combinations of {qu}j”il with interval coefficients.
That is,

M
Shr=A{wn C Sy lwy =) A;¢;, A;€IR, (j=1,---,M) }.

i=1

For any o € R, set
0] = {6€ 55 | Iy < and [z < Cha }
We now construct the iteration sequence { (6ull, a,, )}ns0 € Shr X RT as below.
n =0 : Set dul) = {0}, and ay = 0.
n > 1 : First, for a given 0 < ¢ < 1, define the o-inflation of (éu} ', o, 1) by
M
SupTt=supTt + ) [—1,1] 0 ¢, Op1 =Qpy +0
7=1
Next, for the set U ! = wy, + 6@} " + [@,_1], define (6u}, o) € Sy x R by

sup = Ty —upy an = ChA sup [|F(w)]|ze(e). (9)

uEU"fl



Note that these iterations are carried out independent of the parameter €. In the actual
caluculation, each quantity is computed in the over estimated sense by using the interval arith-
metic. Finally, the verification condition in a computer is given by following theorem (the proof
is in [5]).

THEOREM 1. If for some n > 1, two relationships

sul Cour, o < @i, (10)

hold, then there exists a solution of (3) in uy + éu} + [ay,]. Here, the first term of (10) means
the strict inclusion in the sense of each coefficient interval in 611271 and buy.

4 A computational algorithm by computer

In this section, we propose the concrete computing algorithm in computer, which is the efficient
computing algorithm from the view point of the interval arithmetic ([1]).
First we enclose éu} in (9) as

M
buy, = Z Xj b5, (11)
=1

where, (X7');j=1,..a is an interval vector which will be defined as below. We define {b;};-1 ..

and {c;j};=1..m as the coefficients of u; and Fuy, = P,Fuy, as follows:

M ~ M
up =Y bigy, Fup = cj¢;.
j=1 j=1

And we denote for each 1 <1,7 < M,

gii = (VI = F'(up)]nd;, Vi ), djii = (Ve;, Vi),

and corresponding M x M matrices to the components g;; and dj; by G and D, respectively.
From the Assumption 1, GG is invertible. We also set

K7~ = (FU") = flun) — f'(un)6up™", 6).

Here, (KJ’-FI)]-:L._HM is an interval vector. Then, using the result in [1], we can prove the
following proposition,

PROPOSITION 1. Interval coefficients X" in (11) are determined by

(X7) = G7H(D(c; = by) + MK;7H)). (12)

The most important computation in the above proposition is the estimation of the inter-
val vector (K;-“l)j:l’.__’M. For simplicity, we use the éu and [a] insted of @} ' and [@, 4],
respectivery. Since f(t) = (t —1)*, foreach i (i =1,---, M), K" " is enclosed as :

= (flun +bu+[a]) = f(un) — f'(un)bu, i)
C ((un+o6u—1)" = (up = 1)" = f'(un)ou, ¢; ) + -1, 1];‘e~1[P]Hﬁ||L2(Q)H¢z’||L2(Q)
-

ki + [~ 1,1] Chtn_1 ||6i]| 12(c)»

K

(2

where k; = ((up + 6u — 1) — (up, — 1)" — f'(up)éu, ¢; ). We can estimate the interval x; by
the following result:



PROPOSITION 2. For d = ||0u||1e(), e ={r € Q| —d+1 <uy <d+ 1},
Ni = (f(un + du) — f(un) — f'(un)éu)d; da. (13)
d

Proof. If x € Q satisfies up(x) > 1+ d, then we have
up(z) +s>up(z) —d—1>0, Vs € du,

up(x) —1>d >0,
fl(uh(x)) = 1a

which imply x; = 0. Similaly, we can show that x; vanishes on the region of {2 such that
up(x) <1—d. =

The estimate (13) for each element of  plays an essential role in order to enclose the width
of K" ! as narrow as possible.

5 One dimensional case

In this section, we give some numerical results for one dimensional case. We condider the
following two point boundary value problem.

{ —u"=XNu—1)" in (0,1)
u(0) = u(1) = 0.

(14)

It is known that the problem (14) has a non-trivial solution if A > 7%, and u is represented

by

1
A2 —

u(z) = (15)

T —2A2 |z — 0.5]
1

\)
>~
||

1+ |z — 0.5 > .
A2 —1 2)2
We divide the interval Q = (0,1) into N equal parts and set for i =1,2,--- N,
1 1
) QZ - 1—1s4Le )y h=—
Ti = o (mi1,2;) N

Also, let P;(£2;) denote the set of linear polynomials on §2; and define the finite element subspace
Sh by

Sp={veCQ)| v, € P(%),1<i <N, v(0)=v(1)=0}. (16)

Then, dim S, = N — 1, and we now choose the basis of S} as the following hat functions :

¢i(zy) = for 1<j,k<N.
0 (k#3),

We can take the constant C' previously appeared as 1/7 (cf. [2] ).



The numerical examples for one dimensional case have been computed on an Sun Sparc 10
workstation using the library PROFIL corded by Kniippel in Technical University of Hamburg-
Harburg ([6]). PROFIL is a portable C++ class fast interval library. It introduces new data
types as vectors, matrices, interval vectors and matrics, etc. and lots of operations between
them. Additionally, PROFIL supports an interval linear system solvers proposed by Rump
([7]). These methods compute an enclosure of the solution set z of the interval linear system
Az = v where A and v are interval matrix and vector, respectively.

Now we show some numerical examples verified by the procedure in section 4.

Ezample 1. A = 10, number of partitions N = 100, iteration numbers n = 6 in Theorem1,
ag = 2.20098.

Figure 1 shows the guarenteed intervals for an exact solution at each mesh point. Namely, it
is verified that there exists a solution whose range at mesh points are included between two
curves.
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Fig. 1. Range of the solution for A = 10

Ezample 2. A = 100, number of partitions N = 120, iteration numbers n = 14, a4 =
0.03187. Figure 2 shows the shape of the solution.
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Fig. 2. Range of the solution for A = 100
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6 Two dimensional case

Let Q be a rectangular domain in IR? such that Q = (0,1) x (0,1). Also let &, : 0 =z < 71 <
-+ < zy =1 be a uniform partition, and let 6, be the same partition as ¢, for y direction. We
define the partition of Q2 by 6 = ¢, ® ¢,. Further, we define the finite element subspace S by
Sp = Mi(z) @ M{(y), where M{(x), M(y) are sets of piecewise linear polynomials on (0, 1)
defined by (16) in the variables z and y, respectively. We can also take the constant C' as 1/7
(cf. [8]).

In the verification process, we need to calculate the terms of the form (f(us),¢n), for
up, ¢ € Sp. These terms can be represented by

(Pl n) =32 [ SCun@))no)

where €); is the rectangular element such that Q = Y Q. That is, the integration can be
carried out element by element. By the definition of f, for z € €,

Flne)on(a) = { (407 D0 o) 2

Therefore, we must evaluate the portion which u; — 1 changes the sign in €2;. The possible
cases are illustrated in Figure 3.

—lh=1
bh<1 ~—UW=1 lh<1

U>1

U>1

Fig. 3. Distribution of u;, in an element

For each case, using suitable change of variables, we can calculate the integration on €2;,
and hence exact evaluation of (f(uy), ¢n) becomes possible.

Note that we can take the approximate solution uj; such that the measure of the set in €2
satisfying u;, = 1 equals zero. This fact implies that we need not consider the value £ in the
definition of f’.

Ezample 3. A = 40, number of partitions N = 130, iteration numbers n = 5 in Theorem1,
as = 0.02726.

Figure 4 shows the outline of the shape for the solution along the line y = 0.5. That is, it is
verified that there exists a solution between these two curves with additional Hy(§2)-error as.
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Fig. 4. Outline of the shape of the solution for A = 40 along the line y = 0.5

Ezample 4. A = 30, number of partitions N = 50, iteration numbers : 7, as = 0.10956.
Figure 5 and 6 shows the approximate solution and outline of the shape for the free boundary,
respectively.
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Fig. 5. approximate solution Fig. 6. Range of the free boundary

As, in any case, these calculations are too complicated to compute by hand, we used the
symbolic system, Mathematica, which greatly reduced our efforts of computation.

The numerical examples for two dimensional case are computed on an Fujitsu VP2600/10
vector processor using computer arithmetic with double precision instead of strict interval
computations. But from our experiences, the order of magnitude for the effect of round-off
is under 1071%. Therefore, it is almost negligible compared with the truncation error which
amounts to around 1072. Figure 7 illustrates the A - L® curve obtained by our sheme. Each
dot implies that we could verify the weak solutions for the corresponding .
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