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Abstract. A numerical verification method of the solution for the stationary Navier-Stokes
equations is described. This method is based on the infinite dimensional fixed point theorem using
the Newton-like operator. We present a verification algorithm which generates automatically on
a computer a set including the exact solution. Some numerical examples are also discussed.
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1. Introduction

We proposed, in [9] and [10], a method to estimate the guaranteed a posteriori H}
error bounds of the finite element solutions for the Stokes problem in mathemati-
cally rigorous sense. These papers also describe a method to derive the constructive
H} a priori error estimates for the same problems based on the estimation of the
largest eigenvalues for related matrices.

Furthermore, in [11], we clarified that an Aubin-Nitsche-like technique can also be
applied to the constructive L? error estimates and establish the estimates both in
a posteriori and a priori sense by using the results obtained in our previous works.

In this paper, we describe a numerical verification method of the solution for
the stationary Navier-Stokes equations incorporating with a posteriori and a priori
error estimates for the Stokes problem. This method is based on the method in
[7], [8] for elliptic problems, but some essential extensions are necessary to deal
with the convection term. Namely, special techniques are devised to overcome the
difficulty from the low regularity caused by such term. We present a verification
algorithm which automatically generates on a computer a set including the exact
solution.

1.1. Navier-Stokes equations

We consider the following stationary Navier-Stokes equations
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—vAu+Vp = —(u-V)u+f in Q,
divu = 0 in Q, (1)
u = 0 on 0N,

where  is a convex polygonal domain in R?, u = (u1,u2)” the two-dimensional
velocity field, p a kinematic pressure field, ¥ > 0 the viscosity constant and f =
(f1, f2)T a pair of L? function on Q which means a density of body forces per unit
mass.

1.2. Some function spaces

We denote by H*(Q) the usual k-th order Sobolev space on €2, and define (-,-) as
the inner product in L?(§) and put

=
=2
Il

= {ve H' () ; v=0 on 9N},
{ve L*(Q); (v,1) =0},
S = HLYQ)® x L3(D).

~
El\\?
=2

i

The norm in L?*(2) and H} () is denoted by |glo = (q,q)l/2 and |v|; = |Vuo,
respectively. We also define H?(Q2)-seminorm | - |5 by

o\ 1/2
)

In what follows, since no confusion may arise, we will use the same notations for
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the corresponding norms and inner products in L?(2)? and H&(Q)2 as in L2()
and H}(Q), respectively. Finally, we define H_l(ﬂ)2 as the dual space of H&(Q)2
and < -+ > as the duality pairing between Hfl(ﬂ)2 and Hé(Q)Q. The norm in
Hil(Q)2 is denoted by |u|_.

2. Finite Element Approximation

We rewrite (1) in the weak form:

find [u,p] € H&(Q)2 x LZ(2) such that
{V(Vu,VU)—(p,diVu) = —((u-Vu,v)+ (f,v) VvEH&(Q)2, (2)
(divu,q) = 0 Vg € L3(9).

Note that, for v € H&(Q)Q, the term (u - V)u does not belong to L2(€2)? but
LP(Q)?(p < 2) because of Sobolev’s imbedding theorem(e.g.[2]).

Next, we introduce some finite element subspaces for the approximation of the
velocity and pressure. Let 7, be a family of triangulations of Q C IR?, which consist



A NUMERICAL VERIFICATION FOR THE NAVIER-STOKES EQUATIONS 3

of triangles or quadrilaterals dependent on a scale parameter h > 0. For 7j, we
denote by X;, C HF()NC(2) and Y, C L2(2)NC () the finite element subspaces
for the approximation of each component of the velocity u and the pressure p,
respectively. Here, continuity assumptions of X; and Y} are necessary to obtain
the guaranteed error bounds for the Stokes problem(see [10]).

We set Sj, = X7. Furthermore, we assume, as the approximation property of Xj,,
that

Jnf o=l < Cohloh, Vo€ HY(@) N H(Q),
€Xp

where Cj is a positive constant, independent of v and h, which can be numerically
determined.This assumption holds for many finite element subspaces (cf.[1]).

It is well-known, e.g.[2], that for each & € Hﬁl(Q)Q, the weak form of the Stokes
equation:

V(Vu,Vv)—(p,divv)—(q,divu):< £)U> V[v,q]GS (3)

has a unique solution [u,p] € S. We suppose that for each £ € H_l(ﬂ)2, there
exists a unique solution [up, pn] € Sp X Y}, satisfying

v(Vup, Vo, ) = (pp,divoy ) = (qn,divug ) =< § v, > V[vp,qn] € Sp X Y.

(4)

The validity of this assumption can be checked by so-called discrete inf-sup condi-

tion on Sy, X Y}, (cf.[2]). If [u,p] is a solution of (3) and [up,ps] is a solution of (4),
it can be easily seen that

lu —uply < Calé|—1, (5)

where Co = 2/v is a positive constant. Moreover, for the case £ € L?(Q)?, us-
ing constructive a priori error estimates described in [10], a positive constant Cj,
dependent on Q, h, Cy and v only, such that

lu — uply < C1l€o, (6)

can be computed.
A finite element solution [up,pn] € Sp X Y}, of problem (2) is defined by

v(Vup,Vuop ) — (pn,dive, ) = —((up - Viup,vp )+ (f,on) Vo, € S,

{ —(divup,qn) = 0 Vg, € Y},
(7)
In actual calculation, we use the interval Newton method to enclose [u, pp] satisfy-
ing (7) in the small intervals. In what follows, we fix the spaces X}, Sy, Y} and let

[un,pr] denote an approximate solution of (2) satisfying (7). Using the component
uy, of this solution we consider the following Stokes problem
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—vAL+Vp = —(up-V)up+ f in Q,
diva = 0 in Q, (8)
u =0 on Of).

By the assumption of uniqueness of the solution satisfying (4), the finite element

solution [u,p] € S of (8) coincides with [us, ps]. Consequently, setting v € H&(Q)2

and py € L2() as
Vo = U Up, Po =P — Ph,

we can compute the numerical estimates of |vo|; and |po|o using a posteriori es-
timates for (8) because of —(uy - V)u, + f € L*(2)? (cf.[9], [10], [11]). In what
follows, vg is considered as an element in H&(Q)2 whose norm can be bounded, but
explicit form is unknown. By (1) and (8) we have

(A== = oDt (T
div(u—1a) = 0.

Here, w and r are defined by
w=u-—u, r=p—p,

respectively. Then, v = w+ @ = w 4+ vo + uj, implies the following residual form for
the Navier-Stokes equation

—vAw+Vr = g(w) in Q,
divw = 0 in Q, (9)
w = 0 on 0N,

where

g(w) = —((up +vo +w) - V)(up +vo + w) + (up - V)uy.

3. Fixed Point Formulation

First, note that, since the Stokes problem

—VvAD+ Vi = € in Q,
divio = 0 in Q, (10)
w = 0 on 99,

has a unique solution [w,7] € S for each £ € Hil(ﬂ)2, denoting the solution w

of (10) by AE, then, A is a continuous linear operator from Hil(Q)2 to H&(Q)Q.
Thus, setting

F = Ag,
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(9) is rewritten as the fixed point problem in H&(Q)2 :
w = Fuw.
Concerning F, the following result is obtained in [6](chapter 5):

LEMMA 1 F is a compact map from H&(Q)2 to H&(Q)Q.

Next, from the assumption of S;, and Y}, for any £ € Hil(Q)Q, there exists a
unique i, € Sy, satisfying (4). We denote this correspondence by A4, : H_l(ﬂ)2 —
Sh. We now define S; by

Si={ve HY(Q) |v=(A-Af, feH(Q)},

and S; by the closure of S; with norm |- |1, and we introduce the product space

X by
X =5,x%x5;

Then, X is a Banach space with norm
max{ |za|1,|z*[r1}, = =[zh,2*] € X.

We define the linear map P from X to H&(Q)2 by

Pr=zxp,+z%, z=xp,2"]€X,

and set
G=goP.

Then, the map F : X — X defined by
Fa = [AyGz, (A — Ay)Gx]

is compact because of the compactness of the map AG = F o P. Thus, if we find
a nonempty, bounded, convex and closed set W C X such that FW C W, then
there exists a fixed point z of ' in W by Schauder’s fixed point theorem. Then,
for this fixed point z = [z,,z*] € X, Pz = ), + 2* € Hy (1) is also a fixed point of
F, namely, Pz is a solution of (2).

4. Newton-like Method and Computer Algorithm

Now, we introduce the Newton-like method proposed in [7], [8]. First, we define

the map g(w) : H&(Q)2 — Hil(Q)2 by

§(w) = =(w- V)w,
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and suppose that the restriction of the operator Py — A ¢ (up): H&(Q)2 — S to
S}, has an inverse

[Pr— Ang'(un)] b+ S — Sh, (11)

where P; is an H{}-projection from H&(Q)2 to Sp, and §'(uy) denotes the Fréchet
derivative of § at wj. This assumption is equivalent to the invertibility of a matrix,
which can be numerically checked in actual verified computations (e.g.[13]). Next,
we define the Newton-like operator Nj, : X — S}, as

Npx =xp — [P — Ahg'(uh)]gl(xh — ApGz), x = [z, 2],
and the compact operator T : X — X by
Tz = [Npz, (A — Ap)Ga].

Then, under the invertibility assumption (11), two fixed point problems: z = Tz
and z = F'z are equivalent.

Now, for any v, € Sj, using real coefficients {a;}i1<;<2, and basis of X :
{¢i}1§i§n, we represent vy as

vn = (D aiti, Y anyidi)’.
i=1 i=1
Then, we define (vp,); by
(vn): = lail, 1<43< 2n.

Now, for any non-negative real vector {W;}i<i<oni2, we define W), C S, and
W* C 57,*1 as

Wy = {wn € S (wp); <W,; 1<i<2n},
W* = {weS;; |lwh <Wanp1 + Wopgoal,

and the set W C X as

W =W, x W=,
Then, we have the following computable verification condition.
THEOREM 1 Let Wy, W* and W be sets defined above. If the inclusions

Np(W) C Wy,
{(A—Ah)G(W) c wr

hold, then there exists a fized point z of F in W.
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Proof. By the definition, W is a non-empty, closed, convex and bounded set in
X. And from (12), we have N, (W) x (A — Ap)G(W) C W), x W* in X. Then, by
the compactness of operator T', we get

TW CW in X.

Hence, from Schauder’s fixed point theorem, we obtain the desired result.

Next, we propose a computer algorithm to construct the set W which satisfies
the verification condition (12). We use the similar iterative method with inflation
to that in [7], [8], etc.

First, for N = 0, we take appropriate initial vector Wi(o) (1<i<2n+2) and
for {Wi(o)}lgiggn+2, we define W = W,SO) x W+ For N > 1, with a given
0< 6K 1, we set

W =wN D146 1<i<2m+2

N-1) (N-1)

and for {Wi(N_l)}1Si52n+2, define the §-inflation by W 1) = W}(L x W
Next, for the set W1 we construct the candidate set W) = W,(LN) x W)
by

w" = N,
wilV) = o su G1(w)lo,
2n+1 1w6W(271)| 1( )|0 (13)
Wiily = G2 sup  |Ga(w)]-,
weW (N 1)

*

where for each w = [wj,, w*] € X,

Ga(w) = —((vo+w") - V)(vo +w) € HT(R)’,

Gi(w) = G(w) — Ga(w) € L*(Q)%

Here, W,SN) is determined by the interval vector solution for the 2n dimensional

linear system of equations with interval right-hand side (cf.[15], [16]). WQ(iV_al cor-
responds to the a priori error estimates (6) for the finite element solution of the
Stokes problem for the smooth part of G(W), which is presented in [10]. On the
other hand, W2(71y+)2 stands for the a priori estimates (5) for the solution of the Stokes
problem with the less smooth (H~!-element) right-hand side, which can be com-
puted because of Go(w) € L'(2) for all w € X. For example, setting 0 = vg + w*,

we have
. IR N 2
(Ga(),v) < |||l gallvlls < CRalidl*|vly Vo € HE(Q),

where || - ||+ is the L*-norm on Q and Cps+ a explicit constant in the Sobolev
imbedding thorem(see [14]). Thus we obtain sup,,cypa-1) |G2(w)|—; < C2,|w],>.
Here, in general, |7I)|12 < 1 because w is a residual part of the solution.

In the actual calculation on a computer, each quantity of (13) is computed in the
over-estimated sense.

Now, we have the following verification condition in a computer.
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THEOREM 2 If, for a step K, we have
wH <wE= 0 1 <i<oam+2,

then, in the set W(E=1) = W}EKA) K= C X constructed by {W;Kﬁl)}lgigzn+2,
there exists an element x satisfying x = Tx.

Proof. From Theorem 1, it is sufficient to check (12) holds for W(E=1)_ Then,
by the assumption and definition of the set W) we have

NWED cwtFn,

Next, for any 9 € (A — A)G(WE 1), we can take w € WK~ such that

b = (A— A4)G(w)
= (A—Ap)G1(w) + (A — Ap)Ga(w).

Also, by virtue of (5) and (6), we get

(A= AGi(w)ly < €1 sup  [Ga(w)lo < WS,
weEW (K=1)
(A= A)Go(w)li < Co sup  [Ga(w)| 1 < WHLY.
weW (K —1)
Hence, we obtain 1) € W*(Kfl), and thus

(A — Ay GV E-DY c pp=ED

holds.

By virtue of the Newton-like operator N; and the constructive a priori error
estimate (6), the above process should be successful as the parameter h becomes
small.

5. Numerical Examples

Let © be a rectangular domain in IR? such that Q = (0,1) x (0,1). Also let &, :
0=1z¢ <z <- - <z =1 be a uniform partition in z direction, and let §, be the
same partition as 0, for y direction. We define the partition of Q by 6 = 6, ® §,.
L denotes the number of partitions for the interval (0,1), i.e. h = 1/L.

Further, we define the finite element subspace X} and Y, by X}, = M2(z)@MZE(y)
where M2(x), M2(y) are sets of continuous piecewise quadratic polynomials on
(0,1) under the above partition § with homogeneous boundary condition, and set
Y, = Mj(z) @ Mi(y) N LE(Q), where M{(z), M{(y) piecewise linear as well. By
the result in [12], we can take the constant Cy = 1/(27).
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We choose the vector function f so that

ui(x,y) = Csin® 7z sin 7y cos Ty,
us(x,y) = —C'sin® mysin 7wz cos i,
p(z,y) = —C?cos2mx cos2my/16

are the exact solutions of (1) for an arbitrary constant C. Figure 1 and Figure 2
show the pressure and velocity field on Q, respectively(C=1).

e e — N N N A
e n e o

0.0 L 1 1 1 ) \.
0.0 0.2 0.4 0.6 0.8 10
X-AXIS

Fig. 1. Pressure field p Fig. 2. Velocity field u = (u1,us)”

Table 1 shows verified values of C, Cy, |vg|1, Wéfﬁl, WZ(fJZQ and ||W,EK)||OO, where

Il - lloo stands for the L*-norm on Q. Here, K is the iteration number satisfying
the verification condition of Theorem 2.

K K K
v L K ¢ G e ol Wl WD W,
1 10 14 1/8 0.140 7.50x1072 2.61x10-2 3.52x1073  2.44x1073 1.67x10~*
2 10 12 1/10  0.165 5.00x1072  1.29x1072  1.33x10~3  7.67x10~*  7.67x10~%

ot

40 22 1/10  0.143 5.00x1072  3.55x10~3  1.38x1073 7.59x10°% 1.89x10~5
10 40 23 1/20 0.131 2.38x1072  4.19x1072  4.26x107%  1.86x107* 1.47x107°
20 40 32 1/40  0.257 1.25x1072  5.81x10~*  4.45x10~*  1.96x10~*  2.47x10~°
40 40 27 1/100 0.511 5.00x107%  4.35x107%  2.90x10"%  1.08x10~%  2.42x10~°
50 40 13 1/200 0.639 2.50x1073  2.68x10~%  8.35x107% 1.95x107%  8.48x10~7

100 40 15 1/400 1.270 1.00x10~3 2.09x10~%  6.63x10~5 1.37x10~5  1.02x10~6

Table 1. Verified values

Up to now, we have to choose rather small C' as 1/v becomes large. The numer-
ical examples are computed on FUJITSU VPP700/56 vector parallel processor by



10 Y. WATANABE, N. YAMAMOTO AND M.T. NAKAO

the usual computer arithmetic with double precision. Hence, the round off errors
in these examples are neglected. However, from our experiences, the order of mag-
nitude for the effect of round-off is under 1071°. Therefore, it is almost negligible
compared with the truncation error which amounts to 1073 ~ 1072, Of course, we
have to use those verification software systems (e.g. [3], [4], [5]) in case that we
need the rigorous mathematical proof.
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