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Abstract. A numerical veri�cation method of the solution for the stationary Navier-Stokes

equations is described. This method is based on the in�nite dimensional �xed point theorem using

the Newton-like operator. We present a veri�cation algorithm which generates automatically on

a computer a set including the exact solution. Some numerical examples are also discussed.
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1. Introduction

We proposed, in [9] and [10], a method to estimate the guaranteed a posteriori H1
0

error bounds of the �nite element solutions for the Stokes problem in mathemati-

cally rigorous sense. These papers also describe a method to derive the constructive

H1
0 a priori error estimates for the same problems based on the estimation of the

largest eigenvalues for related matrices.

Furthermore, in [11], we clari�ed that an Aubin-Nitsche-like technique can also be

applied to the constructive L2 error estimates and establish the estimates both in

a posteriori and a priori sense by using the results obtained in our previous works.

In this paper, we describe a numerical veri�cation method of the solution for

the stationary Navier-Stokes equations incorporating with a posteriori and a priori

error estimates for the Stokes problem. This method is based on the method in

[7], [8] for elliptic problems, but some essential extensions are necessary to deal

with the convection term. Namely, special techniques are devised to overcome the

di�culty from the low regularity caused by such term. We present a veri�cation

algorithm which automatically generates on a computer a set including the exact

solution.

1.1. Navier-Stokes equations

We consider the following stationary Navier-Stokes equations
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8<
:
���u+rp = �(u � r)u+ f in 
;

divu = 0 in 
;

u = 0 on @
;

(1)

where 
 is a convex polygonal domain in IR2, u = (u1; u2)
T the two-dimensional

velocity �eld, p a kinematic pressure �eld, � > 0 the viscosity constant and f =

(f1; f2)
T a pair of L2 function on 
 which means a density of body forces per unit

mass.

1.2. Some function spaces

We denote by Hk(
) the usual k-th order Sobolev space on 
, and de�ne ( �; � ) as

the inner product in L2(
) and put

H1
0 (
) � fv 2 H1(
) ; v = 0 on @
g;

L20(
) � fv 2 L2(
) ; ( v; 1 ) = 0g;

S � H1
0 (
)

2
� L20(
):

The norm in L2(
) and H1
0 (
) is denoted by jqj0 � ( q; q )

1=2
and jvj1 � jrvj0,

respectively. We also de�ne H2(
)-seminorm j � j2 by

juj2 �

 ����@2u@x2

����
2

0

+ 2

���� @2u@x@y

����
2

0

+

����@2u@y2

����
2

0

!1=2

:

In what follows, since no confusion may arise, we will use the same notations for

the corresponding norms and inner products in L2(
)2 and H1
0 (
)

2
as in L2(
)

and H1
0 (
), respectively. Finally, we de�ne H

�1(
)
2
as the dual space of H1

0 (
)
2

and < �; � > as the duality pairing between H�1(
)
2
and H1

0 (
)
2
. The norm in

H�1(
)
2
is denoted by juj�1.

2. Finite Element Approximation

We rewrite (1) in the weak form:

�nd [u; p] 2 H1
0 (
)

2
� L20(
) such that(

�(ru;rv )� ( p; div v ) = �( (u � r)u; v ) + ( f; v ) 8v 2 H1
0 (
)

2
;

( divu; q ) = 0 8q 2 L20(
):

(2)

Note that, for u 2 H1
0 (
)

2
, the term (u � r)u does not belong to L2(
)2 but

Lp(
)2(p < 2) because of Sobolev's imbedding theorem(e.g.[2]).

Next, we introduce some �nite element subspaces for the approximation of the

velocity and pressure. Let Th be a family of triangulations of 
 � IR2, which consist
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of triangles or quadrilaterals dependent on a scale parameter h > 0. For Th, we

denote by Xh � H1
0 (
)\C(

�
) and Yh � L20(
)\C(
�
) the �nite element subspaces

for the approximation of each component of the velocity u and the pressure p,

respectively. Here, continuity assumptions of Xh and Yh are necessary to obtain

the guaranteed error bounds for the Stokes problem(see [10]).

We set Sh � X2
h. Furthermore, we assume, as the approximation property of Xh,

that

inf
�2Xh

jv � �j1 � C0hjvj2 8v 2 H1
0 (
) \H

2(
);

where C0 is a positive constant, independent of v and h, which can be numerically

determined.This assumption holds for many �nite element subspaces (cf.[1]).

It is well-known, e.g.[2], that for each � 2 H�1(
)
2
, the weak form of the Stokes

equation:

�(ru;rv )� ( p; div v )� ( q; divu ) =< �; v > 8[v; q] 2 S (3)

has a unique solution [u; p] 2 S. We suppose that for each � 2 H�1(
)
2
, there

exists a unique solution [uh; ph] 2 Sh � Yh satisfying

�(ruh;rvh )� ( ph; div vh )� ( qh; divuh ) =< �; vh > 8[vh; qh] 2 Sh � Yh:

(4)

The validity of this assumption can be checked by so-called discrete inf-sup condi-

tion on Sh � Yh (cf.[2]). If [u; p] is a solution of (3) and [uh; ph] is a solution of (4),

it can be easily seen that

ju� uhj1 � C2j�j�1; (5)

where C2 � 2=� is a positive constant. Moreover, for the case � 2 L2(
)2, us-

ing constructive a priori error estimates described in [10], a positive constant C1,

dependent on 
, h, C0 and � only, such that

ju� uhj1 � C1j�j0; (6)

can be computed.

A �nite element solution [uh; ph] 2 Sh � Yh of problem (2) is de�ned by(
�(ruh;rvh )� ( ph; div vh ) = �( (uh � r)uh; vh ) + ( f; vh ) 8vh 2 Sh;

�( divuh; qh ) = 0 8qh 2 Yh:

(7)

In actual calculation, we use the interval Newton method to enclose [uh; ph] satisfy-

ing (7) in the small intervals. In what follows, we �x the spaces Xh, Sh, Yh and let

[uh; ph] denote an approximate solution of (2) satisfying (7). Using the component

uh of this solution we consider the following Stokes problem
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8<
:
����u+r�p = �(uh � r)uh + f in 
;

div �u = 0 in 
;

�u = 0 on @
:

(8)

By the assumption of uniqueness of the solution satisfying (4), the �nite element

solution [�u; �p] 2 S of (8) coincides with [uh; ph]. Consequently, setting v0 2 H
1
0 (
)

2

and p0 2 L
2
0(
) as

v0 � �u� uh; p0 � �p� ph;

we can compute the numerical estimates of jv0j1 and jp0j0 using a posteriori es-

timates for (8) because of �(uh � r)uh + f 2 L2(
)2 (cf.[9], [10], [11]). In what

follows, v0 is considered as an element in H1
0 (
)

2
whose norm can be bounded, but

explicit form is unknown. By (1) and (8) we have�
���(u� �u) +r(p� �p) = �(u � r)u+ (uh � r)uh;

div (u� �u) = 0:

Here, w and r are de�ned by

w � u� �u; r � p� �p;

respectively. Then, u = w+ �u = w+ v0+uh implies the following residual form for

the Navier-Stokes equation8<
:
���w +rr = g(w) in 
;

divw = 0 in 
;

w = 0 on @
;

(9)

where

g(w) � �((uh + v0 + w) � r)(uh + v0 + w) + (uh � r)uh:

3. Fixed Point Formulation

First, note that, since the Stokes problem8<
:
���ŵ+rr̂ = � in 
;

div ŵ = 0 in 
;

ŵ = 0 on @
;

(10)

has a unique solution [ŵ; r̂] 2 S for each � 2 H�1(
)
2
, denoting the solution ŵ

of (10) by A�, then, A is a continuous linear operator from H�1(
)
2
to H1

0 (
)
2
.

Thus, setting

F � Ag;
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(9) is rewritten as the �xed point problem in H1
0 (
)

2
:

w = Fw:

Concerning F , the following result is obtained in [6](chapter 5):

Lemma 1 F is a compact map from H1
0 (
)

2
to H1

0 (
)
2
.

Next, from the assumption of Sh and Yh, for any � 2 H�1(
)
2
, there exists a

unique ~uh 2 Sh satisfying (4). We denote this correspondence by Ah : H
�1(
)

2
�!

Sh. We now de�ne S�h by

S�h � fv 2 H1
0 (
)

2
j v = (A�Ah)f; f 2 H�1(
)

2
g;

and �S�h by the closure of S�h with norm j � j1, and we introduce the product space

X by

X � Sh � �S�h

Then, X is a Banach space with norm

maxf jxhj1; jx
�
j1g; x = [xh; x

�] 2 X:

We de�ne the linear map P from X to H1
0 (
)

2
by

Px � xh + x�; x = [xh; x
�] 2 X;

and set

G � g � P:

Then, the map ~F : X �! X de�ned by

~Fx � [AhGx; (A�Ah)Gx]

is compact because of the compactness of the map AG = F � P . Thus, if we �nd

a nonempty, bounded, convex and closed set W � X such that ~FW � W , then

there exists a �xed point x of ~F in W by Schauder's �xed point theorem. Then,

for this �xed point x = [xh; x
�] 2 X, Px = xh+x

�
2 H1

0 (
) is also a �xed point of

F , namely, Px is a solution of (2).

4. Newton-like Method and Computer Algorithm

Now, we introduce the Newton-like method proposed in [7], [8]. First, we de�ne

the map ĝ(w) : H1
0 (
)

2
�! H�1(
)

2
by

ĝ(w) � �(w � r)w;
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and suppose that the restriction of the operator P1 �Ahĝ
0(uh): H

1
0 (
)

2
�! Sh to

Sh has an inverse

[P1 � Ahĝ
0(uh)]

�1
h : Sh �! Sh; (11)

where P1 is an H1
0 -projection from H1

0 (
)
2
to Sh, and ĝ

0(uh) denotes the Fr�echet

derivative of ĝ at uh. This assumption is equivalent to the invertibility of a matrix,

which can be numerically checked in actual veri�ed computations (e.g.[13]). Next,

we de�ne the Newton-like operator Nh : X �! Sh as

Nhx � xh � [P1 � Ahĝ
0(uh)]

�1
h (xh �AhGx); x = [xh; x

�];

and the compact operator T : X �! X by

Tx � [Nhx; (A� Ah)Gx]:

Then, under the invertibility assumption (11), two �xed point problems: x = Tx

and x = ~Fx are equivalent.

Now, for any vh 2 Sh, using real coe�cients faig1�i�2n and basis of Xh :

f�ig1�i�n, we represent vh as

vh = (

nX
i=1

ai�i;

nX
i=1

an+i�i)
T :

Then, we de�ne (vh)i by

(vh)i � jaij; 1 � i � 2n:

Now, for any non-negative real vector fWig1�i�2n+2, we de�ne Wh � Sh and

W �
� �S�h as

Wh � fwh 2 Sh ; (wh)i �Wi 1 � i � 2ng;

W �
� fw 2 �S�h ; jwj1 � W2n+1 +W2n+2g;

and the set W � X as

W �Wh �W �:

Then, we have the following computable veri�cation condition.

Theorem 1 Let Wh, W
� and W be sets de�ned above. If the inclusions�

Nh(W ) � Wh;

(A�Ah)G(W ) � W � (12)

hold, then there exists a �xed point x of ~F in W .



A NUMERICAL VERIFICATION FOR THE NAVIER-STOKES EQUATIONS 7

Proof. By the de�nition, W is a non-empty, closed, convex and bounded set in

X . And from (12), we have Nh(W )� (A�Ah)G(W ) �Wh �W � in X . Then, by

the compactness of operator T , we get

TW �W in X:

Hence, from Schauder's �xed point theorem, we obtain the desired result.

Next, we propose a computer algorithm to construct the set W which satis�es

the veri�cation condition (12). We use the similar iterative method with ination

to that in [7], [8], etc.

First, for N = 0, we take appropriate initial vector W
(0)

i (1 � i � 2n + 2) and

for fW
(0)

i g1�i�2n+2, we de�ne W (0) = W
(0)

h �W �(0). For N � 1, with a given

0 < � � 1, we set

�W
(N�1)
i �W

(N�1)
i (1 + �) 1 � i � 2n+ 2;

and for f �W
(N�1)
i g1�i�2n+2, de�ne the �-ination by �W (N�1) = �W

(N�1)
h � �W �(N�1).

Next, for the set �W (N�1), we construct the candidate set W (N) =W
(N)

h �W �(N)

by 8>>><
>>>:

W
(N)

h � Nh
�W (N�1);

W
(N)
2n+1 � C1 sup

w2 �W (N�1)

jG1(w)j0;

W
(N)
2n+2 � C2 sup

w2 �W (N�1)

jG2(w)j�1;

(13)

where for each w = [wh; w
�] 2 X,

G2(w) � �((v0 + w�) � r)(v0 + w�) 2 H�1(
)
2
;

G1(w) � G(w)�G2(w) 2 L2(
)2:

Here, W
(N)

h is determined by the interval vector solution for the 2n dimensional

linear system of equations with interval right-hand side (cf.[15], [16]). W
(N)

2n+1 cor-

responds to the a priori error estimates (6) for the �nite element solution of the

Stokes problem for the smooth part of G(W ), which is presented in [10]. On the

other hand,W
(N)

2n+2 stands for the a priori estimates (5) for the solution of the Stokes

problem with the less smooth (H�1-element) right-hand side, which can be com-

puted because of G2(w) 2 L
1(
) for all w 2 X . For example, setting ŵ = v0 +w�,

we have

(G2(ŵ); v ) � jŵj1kŵkL4kvkL4 � C2
L4 jŵj1

2
jvj1 8v 2 H1

0 (
)
2
;

where k � kL4 is the L4-norm on 
 and CL4 a explicit constant in the Sobolev

imbedding thorem(see [14]). Thus we obtain supw2 �W (N�1) jG2(w)j�1 � C2
L4 jŵj1

2
.

Here, in general, jŵj1
2
� 1 because ŵ is a residual part of the solution.

In the actual calculation on a computer, each quantity of (13) is computed in the

over-estimated sense.

Now, we have the following veri�cation condition in a computer.
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Theorem 2 If, for a step K, we have

W
(K)

i � �W
(K�1)
i ; 1 � i � 2n+ 2;

then, in the set �W (K�1) = �W
(K�1)
h � �W �(K�1)

� X constructed by f �W
(K�1)
i g1�i�2n+2,

there exists an element x satisfying x = Tx.

Proof. From Theorem 1, it is su�cient to check (12) holds for �W (K�1). Then,

by the assumption and de�nition of the set W (K), we have

Nh
�W (K�1)

� �W
(K�1)
h :

Next, for any  2 (A�Ah)G( �W
(K�1)), we can take w 2 �W (K�1) such that

 = (A� Ah)G(w)

= (A� Ah)G1(w) + (A� Ah)G2(w):

Also, by virtue of (5) and (6), we get

j(A�Ah)G1(w)j1 � C1 sup
w2 �W (K�1)

jG1(w)j0 � �W
(K�1)
2n+1 ;

j(A�Ah)G2(w)j1 � C2 sup
w2 �W (K�1)

jG2(w)j�1 � �W
(K�1)
2n+2 :

Hence, we obtain  2 �W �(K�1), and thus

(A�Ah)G( �W
(K�1)) � �W �(K�1)

holds.

By virtue of the Newton-like operator Nh and the constructive a priori error

estimate (6), the above process should be successful as the parameter h becomes

small.

5. Numerical Examples

Let 
 be a rectangular domain in IR2 such that 
 = (0; 1) � (0; 1). Also let �x :

0 = x0 < x1 < � � � < xL = 1 be a uniform partition in x direction, and let �y be the

same partition as �x for y direction. We de�ne the partition of 
 by � � �x 
 �y.

L denotes the number of partitions for the interval (0; 1), i.e. h = 1=L.

Further, we de�ne the �nite element subspaceXh and Yh byXh �M
2
0(x)
M

2
0(y)

where M2
0(x), M

2
0(y) are sets of continuous piecewise quadratic polynomials on

(0; 1) under the above partition � with homogeneous boundary condition, and set

Yh � M
1
0(x)
M

1
0(y) \ L

2
0(
), where M

1
0(x), M

1
0(y) piecewise linear as well. By

the result in [12], we can take the constant C0 = 1=(2�).
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We choose the vector function f so that

u1(x; y) = C sin2 �x sin�y cos�y;

u2(x; y) = �C sin2 �y sin�x cos�x;

p(x; y) = �C2 cos 2�x cos 2�y=16

are the exact solutions of (1) for an arbitrary constant C. Figure 1 and Figure 2

show the pressure and velocity �eld on 
, respectively(C=1).

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

-0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

Fig. 1. Pressure �eld p Fig. 2. Velocity �eld u = (u1; u2)
T .

Table 1 shows veri�ed values of C, C1, jv0j1,W
(K)
2n+1, W

(K)
2n+2 and kW

(K)

h k1, where

k � k1 stands for the L1-norm on 
. Here, K is the iteration number satisfying

the veri�cation condition of Theorem 2.

1=� L K C C1 kuhk1 jv0j1 kW
(K)

h
k1 W

(K)

2n+1 W
(K)

2n+2

1 10 14 1/8 0.140 7:50�10�2 2:61�10�2 3:52�10�3 2:44�10�3 1:67�10�4

2 10 12 1/10 0.165 5:00�10�2 1:29�10�2 1:33�10�3 7:67�10�4 7:67�10�5

5 40 22 1/10 0.143 5:00�10�2 3:55�10�3 1:38�10�3 7:59�10�4 1:89�10�5

10 40 23 1/20 0.131 2:38�10�2 4:19�10�2 4:26�10�4 1:86�10�4 1:47�10�6

20 40 32 1/40 0.257 1:25�10�2 5:81�10�4 4:45�10�4 1:96�10�4 2:47�10�6

40 40 27 1/100 0.511 5:00�10�3 4:35�10�4 2:90�10�4 1:08�10�4 2:42�10�6

50 40 13 1/200 0.639 2:50�10�3 2:68�10�4 8:35�10�5 1:95�10�5 8:48�10�7

100 40 15 1/400 1.270 1:00�10�3 2:09�10�4 6:63�10�5 1:37�10�5 1:02�10�6

Table 1. Veri�ed values

Up to now, we have to choose rather small C as 1=� becomes large. The numer-

ical examples are computed on FUJITSU VPP700/56 vector parallel processor by
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the usual computer arithmetic with double precision. Hence, the round o� errors

in these examples are neglected. However, from our experiences, the order of mag-

nitude for the e�ect of round-o� is under 10�10. Therefore, it is almost negligible

compared with the truncation error which amounts to 10�3 � 10�2. Of course, we

have to use those veri�cation software systems (e.g. [3], [4], [5]) in case that we

need the rigorous mathematical proof.
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