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Abstract. This is a continuation of our previous results [9]. In [9], the authors con-
sidered the two-dimensional Rayleigh-Bénard convection and proposed an approach
to prove the exsistence of the steady-state solutions based on the infinite dimensional
fixed-point theorem using Newton-like operator with the spectral approximation and
the constructive error estimates. We numerically verified several exact non-trivial
solutions which correspond to the bifurcated solutions from the trivial solution.
This paper shows more detailed results of verification for the given Prandtl and
Rayleigh numbers. Particularly, we found a new and interesting solution branch
which was not obtained in the previous study, and it should enable us to present
an important information to clarify the global bifurcation structure. All numerical
results discussed are taken into account of the effects of rounding errors in the
floating point computations.

1. The Rayleigh-Bénard Problems

We consider a plane horizontal layer (see Fig.1) of an incompressible
viscous fluid heated from below. At the lower boundary: z = 0 the layer
of fluid is maintained at temperature T + δT and the temperature of
the upper boundary (z = h) is T .
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Fig.1. Fluid layer model

As well known, under the vanishing assumption in y-direction, the
two-dimensional (x-z) heat convection model can be described as the
following Oberbeck-Boussinesq approximations [1, 3]:




ut + uux + wuz = −px/ρ0 + ν∆u,
wt + uwx + wwz = −(pz + gρ)/ρ0 + ν∆w,

ux +wz = 0,
θt + uθx + wθz = κ∆θ.

(1)

Here,
u, w : velocity in x and z, respectively
p : pressure
θ : temperature
ρ : fluid density
ρ0 : density at temperature T + δT
ν : kinematic viscosity
g : gravitational acceleration
κ : coefficient of thermal diffusivity
∗ξ:=∂/∂ξ(ξ = x, z, t)
∆ := ∂2/∂x2 + ∂2/∂z2.

And ρ is assumed to be represented by

ρ− ρ0 = −ρ0α(θ − T − δT ),

where α is the coefficient of thermal expansion.
The Oberbeck-Boussinesq equations (1) have the following station-

ary solution:

u∗ = 0, w∗ = 0, θ∗ = T + δT − δT

h
z, p∗ = p0 − gρ0(z +

αδT

2h
z2),

where p0 is a constant. By setting

û := u, ŵ := w, θ̂ := θ∗ − θ, p̂ := p∗ − p,

we obtain the transformed equations:


ût + ûûx + ŵûz = p̂x/ρ0 + ν∆û,
ŵt + ûŵx + ŵŵz = p̂z/ρ0 − gαθ̂ + ν∆ŵ,

ûx + ŵz = 0,
θ̂t + δT ŵ/h+ ûθ̂x + ŵθ̂z = κ∆θ̂.

(2)
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By further transforming to dimensionless variables:

t→ κt, u→ û/κ, w → ŵ/κ, θ → θ̂h/δT, p→ p̂/(ρ0κ
2)

of (2), we have the dimensionless equations:



ut + uux + wuz = px + P∆u,
wt + uwx + wwz = pz − PR θ + P∆w,

ux + wz = 0,
θt + w + uθx + wθz = ∆θ.

(3)

Here

R :=
δTαg

κνh
Rayleigh number

and
P :=

ν

κ
Prandtl number.

2. Fixed-point formulation of problem

In this section, we describe the problem concerned as a fixed point
equation of a compact map on the appropriate function space. Since
we only consider the the steady-state solutions, ut, wt and θt vanish in
(3). And also assume that all fluid motion is confined to the rectangular
region Ω := {0 < x < 2π/a, 0 < z < π} for a given wave number a > 0.

Let us impose periodic boundary condition (period 2π/a) in the
horizontal direction, stress-free boundary conditions (uz = w = 0) for
the velocity field and Dirichlet boundary conditions (θ = 0) for the
temperature field on the surfaces z = 0, π, respectively.

Furthermore, we assume the following evenness and oddness condi-
tions:

u(x, z) = −u(−x, z), w(x, z) = w(−x, z), θ(x, z) = θ(−x, z).
We use the stream function Ψ satisfying

u = −Ψz, w = Ψx

so that ux + wz = 0. By some simple calculations in (3) with setting
Θ :=

√PRθ, we obtain


P∆2Ψ =
√PRΘx − Ψz∆Ψx + Ψx∆Ψz,

−∆Θ = −√PRΨx + ΨzΘx − ΨxΘz.
(4)
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From the boundary conditions, the functions Ψ and Θ can be as-
sumed to have the following representations:

Ψ =
∞∑

m=1

∞∑
n=1

Amn sin(amx) sin(nz), Θ =
∞∑

m=0

∞∑
n=1

Bmn cos(amx) sin(nz).

(5)
We now define the following function spaces for integers k ≥ 0:

Xk :=

{
Ψ =

∞∑
m=1

∞∑
n=1

Amn sin(amx) sin(nz) | Amn ∈ R,

∞∑
m=1

∞∑
n=1

((am)2k + n2k)A2
mn <∞

}
,

Y k :=

{
Θ =

∞∑
m=0

∞∑
n=1

Bmn cos(amx) sin(nz) | Bmn ∈ R,

∞∑
m=0

∞∑
n=1

((am)2k + n2k)B2
mn <∞

}
.

In order to get the enclosure of the exact solutions for the prob-
lem (4), we need some appropriate finite dimensional subspaces. For
M1, N1,M2 ≥ 1 and N2 ≥ 0, we set N := (M1, N1,M2, N2) and define
the finite dimensional approximate subspaces by

S
(1)
N =


ΨN =

M1∑
m=1

N1∑
n=1

Âmn sin(amx) sin(nz) | Âmn ∈ R


 ,

S
(2)
N =


ΘN =

M2∑
m=0

N2∑
n=1

B̂mn cos(amx) sin(nz) | B̂mn ∈ R


 ,

SN = S
(1)
N × S

(2)
N .

Let denote an approximate solution of (4) by ûN := (Ψ̂N , Θ̂N ) ∈ SN .
We now set


f1(Ψ,Θ) :=

√PRΘx − Ψz∆Ψx + Ψx∆Ψz,

f2(Ψ,Θ) := −√PRΨx + ΨzΘx − ΨxΘz,

where
Ψ = Ψ̂N + w(1), Θ = Θ̂N + w(2).

Then (4) is rewritten as the problem with respect to (w(1), w(2)) ∈
X4 × Y 2 satisfying{

P∆2w(1) = f1(Ψ̂N + w(1), Θ̂N + w(2)) − P∆2Ψ̂N ,

−∆w(2) = f2(Ψ̂N + w(1), Θ̂N + w(2)) + ∆Θ̂N ,
(6)

VC02-proc.tex; 20/06/2003; 8:48; p.4



Some Computer Assisted Proofs for Solutions of the Heat Convection Problems 5

which is so-called a residual equation. Setting

w = (w(1), w(2)),
h1(w) = f1(Ψ̂N + w(1), Θ̂N + w(2)) − P∆2Ψ̂N ,

h2(w) = f2(Ψ̂N + w(1), Θ̂N + w(2)) + ∆Θ̂N ,

h(w) = (h1(w), h2(w)),

by virtue of the Sobolev embbeding theorem and the definition of f1

and f2, h is a bounded continuous map from X3 × Y 1 to X0 × Y 0.
Moreover, it is easily shown that for all (g1, g2) ∈ X0 × Y 0, the linear
problem: {

∆2Ψ̄ = g1,

−∆Θ̄ = g2
(7)

has a unique solution (Ψ̄, Θ̄) ∈ X4 × Y 2. We denote this mapping by
Ψ̄ = (∆2)−1g1 and Θ̄ = (−∆)−1g2, then the operator:

K := (P−1(∆2)−1, (−∆)−1) : X0 × Y 0 → X3 × Y 1

is a compact map because of the compactness of the imbedding X4 ↪→
X3 and Y 2 ↪→ Y 1 and the boundedness of (∆2)−1 : X0 → X4, (−∆)−1 :
Y 0 → Y 2. Thus, (6) is rewritten by a fixed-point equation:

w = Fw (8)

for the compact operator F := K ◦ h on X3 × Y 1. Therefore, by the
Schauder fixed-point theorem, if we find a nonempty, closed, bounded
and convex set W ⊂ X3 × Y 1, satisfying

FW ⊂W (9)

then there exists a solution of (8) in W . The set W in (9) is referred
as a candidate set of solutions.

3. Constructive error estimates and computable verification
condition

In order to obtain the set W satisfying (9), we need a projection into
SN and its constructive a priori error estimates.

For Ψ ∈ X3 and Θ ∈ Y 1, let us define projections P (1)
N Ψ ∈ S

(1)
N and

P
(2)
N Θ ∈ S

(2)
N by


(∆(P (1)
N Ψ − Ψ),∆v(1)

N )L2 = 0 ∀v(1)
N ∈ S

(1)
N ,

(∇(P (2)
N Θ − Θ),∇v(2)

N )L2 = 0 ∀v(2)
N ∈ S

(2)
N .

(10)
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Now we denote the L2-inner product and the L2-norm on Ω by
( ·, ·)L2 and ‖ · ‖L2 , respectively, and also define the H1

0 -norm: ‖∇u‖L2

and the Hk-norm: ‖u‖Hk on Ω by ‖∇u‖2
L2 = ‖ux‖2

L2 + ‖uz‖2
L2 and

‖u‖2
Hk =

∑
i,j∈N,i+j≤k ‖∂i+ju/∂ix∂jz‖2

L2 , respectively. Naturally, the
norms in Xk and Y k are defined by Hk-norm on Ω.
For each (g1, g2) ∈ X0 × Y 0, let (ψ, θ) ∈ X4 × Y 2 be the solution of
(7), and let (P (1)

N ψ,P
(2)
N θ) ∈ SN be finite dimensional approximations

defined by (10). Then, we have the constructive a priori error estimates
of the form:

‖ψ−P (1)
N ψ‖Hk ≤ C1,k‖g1‖L2 and ‖θ−P (2)

N θ‖Hk ≤ C2,k‖g2‖L2 . (11)

Here Ci,k are numerically estimated, e.g., such as

C1,1 ≤ max{ 1
(a2 + (N1 + 1)2)2

,
1

(a2(M1 + 1)2 + 1)2
},

see [9] for details.
We now reformulate the verification condition (9) by applying the

Newton-like method for nonlinear elliptic problems proposed by the
author [6, 7]. Defining the projection from X3 × Y 1 into SN by

PN = (P (1)
N , P

(2)
N ),

the fixed-point problem w = Fw can be decomposed as the finite
dimensional and infinite dimensional part as follows:{

PNw = PNFw,
(I − PN )w = (I − PN )Fw, (12)

where I is the identity map on X3×Y 1. We assume that the restriction
of the operator PN (I−Kf ′(ûN )) : X3×Y 1 −→ SN to SN has an inverse

[I − PNKf ′(ûN )]−1
N : SN −→ SN , (13)

where f ′(ûN ) denotes the Fréchet derivative of f := (f1, f2) at the
approximate solution ûN which coincides with h′(0). Then, we define
the operator NN : X3 × Y 1 −→ SN by

NNw = PNw − [I − PNKf ′(ûN )]−1
N PN (I − F )w

and the compact map T : X3 × Y 1 −→ X3 × Y 1 by

Tw = NNw + (I − PN )Fw.

Since w = Fw ⇔ w = Tw, we have the computable verification
condition of the form:

TW ⊂W, (14)
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where, usually, the candidate set W is taken to be as

W = WN ⊕W∗

with WN ⊂ SN and W∗ ⊂ SN
⊥. Therefore, (14) is equivalently rewrit-

ten as { NNW ⊂ WN ,
(I − PN )FW ⊂ W∗.

(15)

We omit the detailed verification procedures based upon this crite-
rion(see, e.g., [6] [7] and [9] etc.).

4. Numerical Results

We successfully verified several kinds of bifurcating solutions which
actually exist on the different bifurcation branches. By these results
rather complicated bifurcation structure could be clarified for the con-
cerned problem, while only solutions on relatively simple branches were
enclosed in [9],

4.1. The trivial solution

It is clear that the problem (4) has a trivial solution Ψ = Θ = 0 for all
P and R. Fig.2 shows the isotherm of the temperature T + δT − δT

h z
when T = 0 and δT = 5.

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

Fig.2 The isotherm of the temperature: stationary solution.

It is known that for small R the fluid conducts heat diffusively, and
at a critial point RC , heat is transposed through the fluid by convection.
It has been shown by Joseph [4] that (3) has a unique trivial solution
for R < RC . However, the global structure of bifurcated solutions after
the critical Rayleigh point RC has not been known theoretically.
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4.2. First and second bifurcated solutions from the
trivial solution

In our preceding paper [9], we already verified for several nontrivial
solutions corresponding on the first and second bifurcated solution
branches. Namely, for the case that a = 1/

√
2 and P = 10, the first

solution branch appears after the critical Rayleigh number RC = 6.75.
We obtained two non-trivial approximate solutions for various Rayleigh

numbers R of the form:

Ψ̂N =
M1∑

m=1

N1∑
n=1

Âmn sin(amx) sin(nz), Θ̂N =
M2∑

m=0

N2∑
n=1

B̂mn cos(amx) sin(nz)

for some M1, M2, N1 and N2 by Fourier-Galerkin method combined
with Newton-Raphson iteration. Fig.3 shows the velocity field (−(Ψ̂N )z, (Ψ̂N )x)
at R = 50,P = 10,M1 = N1 = M2 = N2 = 10, respectively. We
illustrate the particular value of coefficients, under the figures, which
has the maximum absolute value in {Âmn} and {B̂mn}, respectively.

Â11 ≈ 15.37 Â11 ≈ −15.37
Fig.3 The velocity field of the first bifurcated solution.

Fig.4 shows the isotherm of the temperature

θ∗ = δT (1 − z/π − Θ/
√
RPπ) + T

when T = 0, δT = 5.

VC02-proc.tex; 20/06/2003; 8:48; p.8



Some Computer Assisted Proofs for Solutions of the Heat Convection Problems 9

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 7

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 10

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 20

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 30

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 40

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 50

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 60
Fig.4 The isotherm of the temperature for the first bifurcated solution.

After the Rayleigh number

R =
(a2m2 + n2)3

a2m2
= 13.5 (m = 2, n = 1, a = 1/

√
2),

we obtained two non-trivial approximate solutions which are expected
to be second bifurcated solutions from the trivial solution. Fig.5 and
Fig.6 show the velocity field at R = 50,P = 10,M1 = N1 = M2 =
N2 = 10 and the isotherm of the temperature, respectively.
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Â21 ≈ −7.026 Â21 ≈ 7.026
Fig.5 The velocity field of the second bifurcated solution.

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 14

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 20

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 30

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 40

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 50

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

R = 60
Fig.6 The isotherm of the temperature for the second bifurcated

solution.
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4.3. Third bifurcated solutions from the trivial solution

After the Rayleigh number

R =
(a2m2 + n2)3

a2m2
= 1331/36 (m = 3, n = 1, a = 1/

√
2),

we obtained two non-trivial approximate solutions which are expected
to be third bifurcated solutions from the trivial solution. Fig.7 and Fig.8
show the velocity field at R = 50,P = 10,M1 = N1 = M2 = N2 = 10
and the isotherm of the temperature, respectively.

Â31 ≈ −2.029 Â31 ≈ 2.029
Fig.7 The velocity field of the third bifurcated solution.
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Fig.8 The isotherm of the temperature for the third bifurcated

solution.
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4.4. Another non-trivial solutions

We also calculated four different non-trivial approximate solutions after
R = 32.5. According to those computational results, we expected the
existence of another bifurcation curve which is bifurcated from the
second bifurcation branch (cf.Fig.11). For example, we observed the
phenomena as shown in Fig.9 and Fig.10 for the case that R = 50,P =
10,M1 = N1 = M2 = N2 = 10. Actually we could verify such a solution
branches.

Fig.9 The velocity field of the another non-trivial solutions.
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Fig.10 The isotherm of the temperature for the another non-trivial
solutions.

4.5. Verification Results

As a whole, we succeeded to verify the exact solutions of (4) correspond-
ing to the approximate solutions shown in Fig.11. The vertical axis
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shows the absolute value of the coefficient of the approximate solution:
Θ̂N =

∑M2
m=0

∑N2
n=1 B̂mn sin(amx) sin(nz). Each dot implies that the

verification procedure was resulted in success.

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

−→ R/RC
Fig.11 The bifurcation structure.

Particularly, for the case that R = 60, P = 10 with N := M1 =
M2 = N1 = N2, we could enclosed 10 different solutions whose error
bounds are shown in Table.1. In the table, the half number of solutions
would be obtained by some consideration of symmetric property of the
problem. It might also be possible to show the pitchfork type bifurca-
tion structure by appropriate drawing of the diagram. In Table.1, there
exists a solution (Ψ,Θ) ∈ X3 × Y 1 of (4) in

Ψ∈ Ψ̂N +W
(1)
N +W

(1)
∗ ,

Θ∈ Θ̂N +W
(2)
N +W

(2)
∗ .

Table 1. Verification results; R = 60, P = 10
No. N ‖Ψ̂N‖L2 ‖Θ̂N‖L2 ‖W (1)

N ‖L∞ ‖W (2)
N ‖L∞ ‖W (1)

∗ ‖L∞ ‖W (2)
∗ ‖L∞

1 45 17.44 34.89 1.40×10−9 3.12×10−11 2.46×10−11 1.26×10−7

2 45 17.44 34.89 1.40×10−9 3.12×10−11 2.46×10−11 1.26×10−7

3 30 8.14 30.57 2.35×10−6 2.56×10−8 7.75×10−8 1.35×10−4

4 30 8.14 30.57 2.35×10−6 2.56×10−8 7.75×10−8 1.35×10−4

5 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

6 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

7 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

8 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

9 20 2.84 19.49 3.40×10−5 9.56×10−7 1.75×10−6 1.10×10−3

10 20 2.84 19.49 3.40×10−5 9.56×10−7 1.75×10−6 1.10×10−3
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Remark. In Fig.11, each dot shows the corresponding solution is veri-
fied in mathematically rigorous sense. Therefore, it also implies that we
established a computer assisted proof in the analysis of concerned heat
convection problem. However, from our verification results we cannot
decide up to now whether the verified solutions are really bifurcated or
simply isolated solutions. This question should be solved in our future
work.

We used the following software for the verified numerical computa-
tions:

Fortran 90 library INTLIB_90 coded by Kearfott [5] with DIGI-
TAL Fortran V5.4-1283 on Compaq Alpha Server GS320 (Alpha 21264
731MHz; Tru64 UNIX V5.1).

The authors are very grateful to Professor Kearfott for his kind
implementation and release of this useful software package.
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