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0 Introduction

We describe a method to estimate the guaranteed accuracy of the finite element solu-
tions for the Stokes problem. We show that an a posteriori error can be computed by
using the numerical estimates of a constant related to the so called inf-sup condition
for the continuous problem. Also a method to derive the constructive a priori error
estimates are considered. Furthermore, we will mention about the numerical verifica-
tion method of the solution for the stationary Navier-Stokes equation incorporating
with these error estimates.

Consider the following Stokes problem:

—vAu+Vp = f in Q,
Vau = 0 in Q, (0.1)
u = 0 on 990,

where v > 0 is the viscosity constant, u, f are two dimensional vectors and 2 a convex
polygonal domain in IR2. We denote by H*(Q) the usual k-th Sobolev space, and
define (-,-) as the inner product in L?(2) and put
H}(Q) = {veH'(Q); v=0 on 9N},
LZ(Q) {ve L?(Q); (v,1) =0},
S = HYQ) x L3(Q).

The norm in L?*(2) and H&(Q)2 are denoted by |g|o = (q,q)1/2, )y = (|Vor]o® +
|Vv2|02)1/2, respectively. We introduce a bilinear form £ on S x S by

L([u,p),[v,q]) =v(Vu, Vo)~ (p,Vv)—(q,V-u)  [u,p], [v,q €S.  (0.2)

1 Numerical estimates for inf-sup condition

Using a bilinear form £, the standard variational formulation of (0.1) is given by :
find [u,p] € S such that

(1.1)
L([u,p],[v.q])=(fv) V[v,q €S
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As well known, there exists a constant S > 0 depending only on 2 such that for all
q € L(9), there exists a v € H&(Q)2 satisfying

1
Vo =g, o] < B|Q|0- (1.2)

B is a constant related to inf-sup condition for £ which assures that problem (1.1) has
a unique solution in §. For the star shaped domains, by Horgan[1], this constant g
can be numerically determind, for example, 1/3? < 4 + 24/2 for the square.

Now, using this constant 3, we can describe the following lemma.

Lemma 1.1 Vu,p] € S, let us define §(u,p) by

S(u,p)= sup L([u,p], [v,q])
D= Sl + o

then following estimates hold:

A

1 1 1/2
< (s ) ot

Wb§<;+;>ﬂmm

2 Finite element approximation

Let X;, C H}(Q) N C(Q) and Y}, C LE(2) N C(Q2) be the finite element subspaces
for the approximation of the velocity u and the pressure p, respectively. And set
Sj, = X? x Y),. Then the finite element solution [up,ps] € S, to (1.1) is defined by

v(Vuy, Vo) — (ph, V-op) = (g, V-up) = (f,vn) V{vh, qn] € Sh. (2.1)

Now, we introduce a post-processing procedures proposed by [2]. We define X as a
subspace of H(2) in which the basis of X; are the sum of the basis of Sj, and base
functions corresponding to nodes on the boundary 9f2. Note that

X, CX; CHY(Q), X,#Xj.

We also denote Py as a L2-projection from L?() to Xj, Py as a L?-projection from
L*(Q) to X; and P; as a Hy-projection from Hg(Q) to Xj,. For wy, € Xj, we denote
Vwy, € (X;)? and Awy, € L?(Q2) by

?wh = (P(]i

th

M
4
<
g
=



Guaranteed error bounds for the Stokes Problem 3

It is easily shown that for all v, € X7, the following properties hold:

(—Avp,¢) = (Yo, Vo) Vo € HE (D). (2.2)
|Vwy, — Vwplo = inf |w — Vwylo Ywy, € Xp,. (2.3)
we(X;;)2

Now, we assume, as the approximation property of X}, that

Jnf o€l < Cohlol, Vo € HY(Q) N H(2), (2.4)
€Xn

where Cy is a positive constant independent of v and h which can be numerically
determined. From the properties of projection P; and (2.4), we obtain the following
estimates.

|1) — Pl’l)|0 S Cgh|’u|1 Yo € H&(Q) (25)

3 A posteriori error estimates

Let (u,p) and (up,ppn) be the solutions of (1.1) and (2.1), respectively. We denote
en € H} () and e, € L2(N2) as the error of velocity and pressure by

€y = U — Up,
€n =P — Ph,
respectively. From (2.2) and (2.4), we have the following lemma:

Lemma 3.1 For all [v,q] € S,

L([en,en], [v,4q])

< v|Vuy, — Vuplo + CohlvAuy, — Vo, + flo + |V-uno. (3.1)
[v|1 + lalo

Thus, we obtain the following a posteriori error estimates:

Theorem 3.1 (a posteriori error estimate)

1 1 1/2
|’LL—’ILh|1 S _2+_2 C(uh7ph)7

R

v (3.2)
W—mbs<ﬁ+w>awmﬂ

where C(up,pn) is an a posteriori error estimator which can be computed from the
finite element solutions (up,pp), Co and f by

C(un,pn) = v|Vuy — Vuplo + Coh|lvAuy, — Vpn + flo + |V-unlo- (3.3)

By virtue of (2.1) and (2.3), it is expected that each term in the right hand side of
(3.1) tends to be smaller as making h smaller.
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4 A priori error estimate

From (1.1), Green’s formula and (2.4), we also get the following lemma:

Lemma 4.1 V[v,q] €S,

L([en,en], [v,q])

[v]1 + lalo

We estimate the right hand side of (4.1). If we can take the positive constants K; and
K5 such that

| = Vpn + Poflo < Ki|Poflo, (4.2)
|V'Uh|0 S K2|P0f|0 (43)
independent of f € L2(Q), then the following a priori estimates hold
Theorem 4.1 (a priori error estimate) For all f € L*(Q2)?,
1 1\1/2
u-uh < (54 5)  CWIh,
v

) Csl.
where C'(h) is a positive constant which can be computed from K1, K5, h and Cy
independent of (up,pp) by

C'(h) = \/(Coh K, + K3)? + (Coh)2. (4.4)

1
P—Prlo < <+
| | 3

Now we briefly describe how to estimate K; and K>. Let us denote the basis of X},
as ¢; (j=1,---,n,n =dim X3), f = (f1, f2) and g € R?*" as

g= ((f17¢1),"';(f1;¢n);(f2,¢1);"';(f2,¢n))T'

Then, each term in (4.2) and (4.3) can be represented by quadratic forms of 2n-
dimensional vectors g as follow:

| = Vpr+Pofle® = g7 Ag,
|v'uh|02 = gTBg7
|Pofle” = ¢"Lg,

where, A, B are 2n X 2n symmetric matrix, L a 2n X 2n is a positive definite and
symmetric matrix. Hence, K7 and K5 can be estimated as follows.

T g0\ M2
ko (o 5) "

seRen TL LT

K < 2T Bz 1/2
su .
2= xempln 2T Lx
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Therefore, the estimation of these values is reduced to the matrix eigenvalue problem.

5 Numerical examples

Let © be a rectangular domain in IR? such that Q = (0,1) x (0,1). Also let &, :
0==x0 <z <---<zny =1 be a uniform partition, and let 6, be the same partition
as 0, for y direction. We define the partition of 2 by 6 = 6,®6,. Further, we define the
finite element subspace X, and Y}, by X, = M2(z) ® M2(y) where M2(z), MZ(y)
are sets of piecewise quadratic polynomials on (0,1) with homogeneous boundary
condition and set Y, = M} (z) @ M} (y) where M} (), M{(y) piecewise linear as well.
We can also take the constant v = 1, Cy = 1/(27) ([3]) and 1/8% = 4 + 2V/2.

Figure 1 illustrates the following a priori error constants for the velocity and pressure
in Theorem 4.1:

1 1\ 1 ,
<§+§> C'(h) and <B+%>C(h),

respectively.
1
08 -
0.6 :
L apriori constant for the pressure
04 B
0-2 api iUI corislalic fUl hc Vd Ublt‘y
L \\\\
O | I I L L L
6 8 10 12 14
1/h

Fig. 1. A priori error constants

Next we take the vector function f so that u = (uy,uz) :

ui(a,y) = 202°(1—2)’y(1 —y)(1 - 2y)0
us(z,y) = 20y%(1 —y)?z(1 —z)(1 — 2z),

and

p(z,y) = 42(—1+2y) (102 — 152° +62* — 10y + 30xy — 202%y + 10y* — 302y + 202%y?)
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are the exact solutions for (0.1). In this case, |u|y = 4/7 ~ 0.571 and |p|o =
2,/962/33/7 ~ 1.543. Figure 2 shows the vector field u = (u1,uz) on Q.
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Fig.2. vector field u
Figure 3 illustrates each relative error bound from Theorem 3.1 defined by

|U—Uh|1 and |p—Ph|0

)

|uly |plo
respectively.
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Fig. 3. a posteriori error bounds

The numerical examples are computed on FUJITSU VP2600/10 vector processor by
the usual computer arithmetic with double precision. So, the round off errors in these
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examples are neglected. However, it should be sufficient that these results confirms us
the expected order of the error.
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