3 1-10 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Constructive L? Error Estimates for Finite
Element Solutions of the Stokes Equations

MITSUHIRO T. N;\I\';\OT. NOBITO Y.—\l\L’—U\IOTOJr AND YOSHITAKA \\'ATANABEI

mtnakao@math.kyushu-u.ac.jp
T Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-81, Japan
fComputer Center, Kyushu University 33, Fukuoka 812-81, Japan

Editor:

Abstract. Constructive L? error estimates for finite element solutions of the Stokes equations
are described. We show that the L? error bounds for the velocity can be obtained in a posteriori
and explicit a priori sense. Some numerical examples which confirm us the expected rates of
convergence are presented.
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1. Introduction

Using the numerical estimates of a constant related to the so-called inf-sup condi-
tion, we proposed, in [11] and [12], a method to estimate the guaranteed a posteriori
H} error bounds of the finite element solutions for the Stokes problem in mathe-
matically rigorous sense. Furthermore, these papers describe a method to derive
the constructive HZ a priori error estimates based on the estimation of the largest
eigenvalues for related matrices. These results are confirmed by some numerical
examples.

On the other hand, in many cases, the L? error estimates are obtained by some
duality method called as Aubin-Nitsche’s trick in the mathematical theory of finite
element methods(e.g.,[4], [14]). And the L? rate of convergence generally has a
higher order rate than the H' error. This process sometimes is referred to as “L?
lifting”. However, there is no such result for the Stokes problems in the constructive
sense up to now. Particularly, it is not clear if the expected optimal L? rates of
converegence could be attained for the actual numerical computations.

In this paper, we clarify that an Aubin-Nitsche-like technique can also be ap-
plied to the constructive L? error estimates and establish the estimates both in a
posteriori and a priori sense by using the results obtained in our previous works.
Furthermore, by illustrating some numerical examples, we will show that the ex-
pected optimal rate of convergence for the L? error are actually attained.

Also, we notice that our approach is essentially different from the existing litera-
tures by [1], [16] etc. which give only an error indicator rather than the guaranteed
error bounds. That is, in their works, the explicit value of constants in the error es-
timates are not resolved at all. Another difference is that our work is deeply related
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to the numerical verification or the numerical existence proof of exact solutions for
associated nonlinear problems, i.e.,the Navier-Stokes equations([17]).

2. Stokes problem

We consider the following Stokes problem

—vAu+Vp=f in Q,
divu =0 in Q, (1)
u =0 on 99,

where v > 0 is the viscosity constant, u = (u1,u2)” the two-dimensional velocity
field, f = (fi, f2)" a pair of L? function on ©Q which means a density of body
forces per unit mass and Q a convex polygonal domain in R?. Here, p represents a
kinematic pressure field and divu = 0 means the incompressibility condition.

We denote by H*(Q) the usual k-th order Sobolev space on 2, and define (-,-)
as the inner product in L?(€) and put

H}(Q) = {veHY(Q); v=0 on 9N},
L3(Q) = {ve L*(Q); (v,1) =0},
S = HYQ)® x L2(D).

Il

The norm in L?(2) and H}(N) is denoted by |gqlo = (q,q)l/2 and |v|; = |Vuo,
respectively. We also define H?(Q)-seminorm | - |» by

9 1/2
|u|2 = < ) .
0

In what follows, since no confusion may arise, we will use the same notations for
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the corresponding norms and inner products in L?(2)? and H&(Q)2 as in L2(9)
and H} (), respectively.
We introduce a bilinear form £ on S X S by

‘C( [uap]v [’U,q] ) = V( V’U,,V’U) - (p,divv) - (qadlvu) [U,p], [U7Q] €S. (2)
Then, the standard variational formulation of (1) (cf.[5])is given by

find [u,p] € S such that )
L([u,pl,[v,q]) = (f,v)  V[v,ql €S.

It is well-known(cf.[5]) that there exists a constant 8 > 0 depending only on 2 such
that for all g € LZ(9), there exists a v € H&(Q)2 satisfying

: 1
dive=4¢,  |vli < Zlglo.
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Here, 3 is a constant related to the inf-sup condition for £ which assures that the
problem (3) has a unique solution in S. For the star shaped domains, by Horgan(
[7]), this constant 3 can be numerically determined, for example, 1/3% < 4 4+ 2v/2
for the square.

3. A posteriori and a priori H} error estimates

Let 7, be a family of triangulations of @ C R?, which consist of triangles or
quadrilaterals dependent on a scale parameter h > 0. For 7,, we denote by
X, C HY Q)N C(Q) and V), C LE(Q) N C(Q) the finite element subspaces for
the approximation of each component of the velocity u and the pressure p, respec-
tively. The standard finite element solution [up,pn] € X7 X YV} to (3) is defined
by

L([un,pnl; [vn,qn] ) = (f,vn) V[on, qn] € X7 X V. (4)

We denote by X a subspace of H!(Q) in which the basis of X; is the union of
the basis of X}, and the base functions corresponding to nodes on the boundary 9f2.
We also define Py as an L2-projection from L?() to Xp, Py as an L2-projection
from L?(2) to X; and P; as an Hj}-projection from H} () to X}, respectively. For
each wy, € X3, we define Vwy, € (X;)? and Awy, € L*(Q) by

N Bwh A~ Bwh )T

v = (Php——,Ph——
Wh, (08:1:’0831

Awp, = divVwy,

b

respectively. We assume, as the approximation property of X}, that

girg |[v—&l1 < Cohlvls Yo € H(Q) N H*(Q),
€eXp
where Cy is a positive constant independent of v and A which can be numerically
determined (see section 5). This assumption holds for many finite element subspaces
(cf[4]).

As is well-known, e.g. [5], (3) has a unique solution [u,p]. And we suppose that
(4) has a solution [up, ps].

Then, we have the following a posteriori error estimates for finite element solutions
of the Stokes equations ([12]).

THEOREM 1 (A POSTERIORI ERROR ESTIMATES) Let [u, p] and [uy,pp] be solutions
of (3) and (4), respectively. Then, the following a posteriori error estimates hold :

1/2
1 1
|u —up|1 < <1/2 + ,82> C(un,pn),

L (5)
Ip— prlo < <B + @) C(un,pn),
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where C'(up,pr) 18 an a posteriori error estimator which can be computed using the
finite element solutions [un, pr] by

C(up,pn) = V|Vuh — Vauplo + Coh|VZ’U,h — Vopp + flo + |divug|o. (6)

Next, we take the positive constants K; and K5 such that
|divauylo < Ki|Poflo, (7)
| = Von + Poflo < Ka|Po flo, (8)

independent of f € L2?(2) (cf.[11]). In order to keep the present paper self-
contained, we briefly describe how to estimate K; and K5. Let us denote the

basis of X, as ¢; (j =1,---,n, n =dim X},), f = (f1, f2)” and g € R*" as
gE((f17¢1)7"'7(f1)¢n)7(f2)¢1))"'5(f27¢n))T~

Then, each term in (7) and (8) can be represented by quadratic forms of 2n-
dimensional vectors g as follows:

|divuglo® = g7 Ayg,

| = Vpn + Poflo® = g7 Aug,
2

|P0f|0 = QTLQ;

where, Ay, As are 2n X 2n symmetric matrices, L a 2n X 2n positive definite and
symmetric matrix. Hence, the upper bounds of K; and K5 can be estimated as
follows.

1/2 1/2
2T Az 2T Asx

K, < SUp —m— , Ky < Sup —7— .
R 7 Lx R 7T Lx

Therefore, the estimation of these values is reduced to finding the maximum eigen-
value of the following generalized eigenvalue problem:

Ar = ALz,

and using a procedure proposed by [18], we can estimate these eigenvalues.
Then, we can show the following a priori estimates ([12]).

THEOREM 2 (A PRIORI ERROR ESTIMATES) For all f € L?(Q)?2, under the assump-
tion of Theorem 1, it holds that

u-unh < (54 5) €Al
(9)
p—prlo < (% " ﬂi> () Ifls.

where C(h) is a positive constant which can be computed from Ki, K5, h and Cy
by

C(h) = /(K1 + CohK5)? + (Coh)2. (10)
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4. L* error estimate for the velocity

In this section, we present our main result of this paper. We show that we can
derive an explicit bound on |u — up|o using the estimation |u — up|; and a method
like well-known Aubin-Nitsche trick for Poisson’s equations ([4], [14], [19]).

THEOREM 3 Let [u,p] and [up, pr] be solutions of (3) and (4), respectively. Then,
the following estimates hold :

|u —uplo < vCi|u—uply + Co|divuslo + Kilp — palo, (11)
where
L
¢ = <% + %) ~C(h),
Cy = <l + i) c(h).
B B

Proof: Let [u,p] and [u,, py] be solutions of (3) and (4), respectively, and consider
the Stokes equation

—vAp+Vip= u—u, in Q,
divg= 0 in Q, (12)
o= 10 on Of).

(From (12) and integration by parts, we have

(u—up,u—up) = (u—up, —vAd+ V)
= v(V(u—up),Veo)+ (divuy,v). (13)

Moreover, for any v;, € X7 and g, € V3, from (3) and (4) we have
v(V(u—wup),Vop ) + (gn,divuy ) — (p — pp,dive ) =0, (14)
and hence from (13), (14) and Schwarz’s inequality,

lu—unlo® = v(V(u—up), V(¢ —vn))+ (% —gqn,divuy ) + (p— pp, dives)
< v|u—wupl|i|¢ —vpl + [divur|o |1 — gulo + |p — prlo |divvslo (15)

is obtained.
Now, taking [vn,qn] € X7 X Y}, as the finite element approximation of (12),

Theorem 2 and (7) imply that
|6 —vnli < Cilu —uplo, (16)
| —gnlo < Colu — uplo, (17)
|divoplo < Kifu —uglo, (18)
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Consequently, from (15), (16), (17) and (18), we have the L? error estimates (11).
|

The right hand side of (11) can be a posteriori estimated by Theorem 1. Moverover,
by virtue of Theorem 2 and (7), we obtain an a priori estimate as follows:

THEOREM 4  For all f € L?(Q), it holds that

|u - ’LthO S (VClz + 202K1)|f|0 (19)

Using Theorem 4, we can calculate the explicit a priori constant in the L? error
bounds for finite element solutions of the velocity to the Stokes problem.

5. Numerical examples

Let Q be a rectangular domain in IR? such that Q = (0,1) x (0,1). Also let &,
:0=29 <2y < -+ <z =1 be a uniform partition, and let 6, be the same
partition as 6, for y direction. We define the partition of Q by § = 6, ® 6,. L
denotes the number of partitions for the interval (0,1), i.e. h = 1/L. Further,
we define the finite element subspace X} and Y}, by X, = M2(z) @ MZ(y) where
M2(z), MZ(y) are sets of continuous piecewise quadratic polynomials on (0, 1)
under the above partition 6 with homogeneous boundary condition. And set Y} =
(M (z) @ M (y)) N LE(2) where M'(z), M'(y) be piecewise linear on (0,1). We
set the constant ¥ = 1. Then we can take Cy = 1/(27) ([13]) and § as in the end
of section 1.

As a numerical example, we consider some error estimates related to the residual
form of the finite element approximation for the following stationary Navier-Stokes
equations:

—Au+Vp = —(u-V)u+f in Q,
divu = 0 in Q, (20)
u =0 on Of).

We take a finite element approximation [us,pn] € X7 x Y}, to (20) satisfying

L([un,prl, o, an)) = =((un - Vun,vn ) + (foon)  Vvn,an] € Xj x Y, (21)

Then, [up, ps] coincides with the finite element solution to the Stokes equation

—Au+Vp = —(up-Vu,+f in Q,
diva = 0 in Q, (22)
=20 on Of).

Now, we set vo = @ — up, € H&(Q)Q, then vo corresponds to the residual error for
the velocity approximation u, to (20) (cf.[10], [19]).
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We now briefly describe how Theorem 3 and 4 are used in practice for our present
purpose.
First, for various L = 1/h, we calculate the approximate solution [up,ps] to (20)
by some appropriate method, e.g., Newton’s method.
Next, we decide K; and K, in (7) and (8), respectively, by estimating the largest
eigenvalues.
We also compute, by using the above uy,, |Au, — Vpy — (up - V)up + flo, [divuso
and |Vuy — Vuy|o in (6).
Then, using those estimates, positive constants C(up,ps) in (6) and C(h) in (10)
can be computed.
Finally, by the application Theorem 1, 2, 3 and 4, the numerical estimates of the
H} and L? norms for vy can be obtained in both of the a posteriori and a priori
sense.

We emphasize that these norm estimates play an important role for the numerical
verification of the solution of the stationary Navier-Stokes equations (cf. [10], [17],
[18], [19]). We choose the vector function f so that

up(x,y) = sin? 7z sin 7y cos 1y
uy(x,y) = —sin® 7y sin 7z cos T
p(r,y) = —cos2mxcos2my/16

are the exact solutions for (20). In this case, ||up||co = 0.71 and | — (up - V)up, + flo =

292.3, where || - || stands for the L* norm on .

Figure 1 and Figure 2 show the L(= 1/h) dependency of |Vuj, — Vuy|o and
|div up|o which correspond to the first and third term in (6), respectively.
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Figure 1. |Vup, — Vuglo Figure 2. |divuplo

Figure 3 illustrates |Aup — Vpn — (up - V)up + flo, the second term in (6) divided

25
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Figure 3. |Aup — Vpp — (up - V)up + flo

The dependency of |Vuy, — Vuy|o and |[divup|o seem to be almost of order O(h?),
and that of |Aup — Vpy — (up - V)up + flo to be almost of order O(h).

Figure 4 illustrates |vg|; and |vg|o for various L = 1/h using the a posteriori and
a priori methods.

10 ¢

- a priori H} error

Tr = ‘
r ~a priori Perror

0.1 -
a posteriori H} error
0.01 - a posteriori *error
0.001 e e L
1 10 100

Figure 4. h-dependency of |vo|; and |volo

These numerical examples show that the error estimates by Theorem 1-4 actually
enable us the expected rates of convergence of errors, i.e., in the optimal sense as
follows:

a priori estimate of |vg|; ~ O(h!)
a priori estimate of |vglg ~ O(h?)
a posteriori estimate of |vg]; ~ O(h?)
a posteriori estimate of |vglg ~ O(h?)

The numerical examples are computed on FUJITSU VP2600/10 vector processor
by the usual computer arithmetic with double precision. So, the round-off errors
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in these examples are neglected. Namely, the results are not validated in the sense
of precise interval arithmetic.

Remark. Constructive error estimates for the finite element solutions of differen-
tial equations essentially include the infinite dimensional aspect. Therefore, our
main emphasis is put on the principle and the way to reduce such an infinite di-
mensional problem to the finite dimension, particularly, for the Stokes problem.
In that sense, the validation of the finite dimensional computation is considered
as a separated problem from our main subject. Therefore, the above numerical
results should be sufficient for our present purpose. Of course, in case that we need
the rigorous mathematical proof, we should take account of errors arised from the
finite dimensional problem by some verified approaches such as [3], [8], [9]etc.
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