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Abstract

We describe a method to estimate the guaranteed error bounds of the finite element solutions
for the Stokes problem in mathematically rigorous sense. We show that an a posteriori error
can be computed by using the numerical estimates of a constant related to the so-called inf-
sup condition for the continuous problem. Also a method to derive the constructive a priori
error bounds are considered. Some numerical examples which confirm us the expected rate of
convergence are presented.

Keywords: Stokes equations, guaranteed error bounds, computable error

1 Introduction

In the numerical approximation of partial differential equations, it is very important to estimate
the computable error bounds. For the finite element solutions of the Stokes equations, several a
posteriori error bounds have been derived, e.g., Verfiirth ([11], [12]), Bank ([1], [2]) and Russo([9]).
In [13], Verfiirth also applied his general results to finite element approximations of scalar quasi-
linear elliptic partial differential equations of 2nd order, and the stationary incompressible Navier-
Stokes equations. However, these methods provide only information about the local and global
error quantities of the computed finite element solutions controlling self-adaptive mesh-refinement
processes, so they do not guarantee mathematically rigorous error bounds at all.

In this paper, we describe a method to estimate the guaranteed accuracy of the finite element
solutions for the Stokes problem.

Using the numerical estimates of a constant related to the so-called inf-sup condition, we show
an a posteriori error bound of the Stokes problem. Also we describe a method to derive the
constructive a priori error bounds based on the estimation of the largest eigenvalue for matrices.

We emphasize that these results provide a basis of the numerical verification method (cf. [7],
[14], [15], [16]) of the solution for the stationary Navier-Stokes equations.

1.1 The Stokes equations

Consider the following Stokes problem

—vAu+Vp=f in Q,
divu=0 in €, (1.1)
u=0 on 0,

where v > 0 is the viscosity constant, u = (uy,us)? the two-dimensional velocity field, f =
(f1, f2)T a smooth function which means a density of body forces per unit mass and € a convex
polygonal domain in IR?. Here, p represents a kinematic pressure field and dive = 0 means
the incompressibility condition. Stokes equations (1.1) are the linearized stationary form of the
Navier-Stokes equations.



An outline of this paper is as follows. Section 2 is devoted to derive some inequalities for
the functions corresponding to velocity and pressure. It is based on the numerical estimates of a
constant related to the so-called inf-sup condition for the continuous problem. In Section 3, we
define the approximate solutions for the Stokes equations by using some finite element subspaces
and show an a posteriori error bound under the suitable assumption. We propose a method to
derive the constructive a priori error bounds and give a detailed computing algorithm in Section
4. And some numerical examples are presented in Section 5.

1.2 Some function spaces

We denote by H*(Q) the usual k-th order Sobolev space on €, and define (-, ) as the inner product
in L?(Q) and put

HY} Q) = {veHY(Q); v=0 on 90},
L) = {vel*Q); (v,1)=0},
S = HYQ) x Li(Q).

The norm in L?(2) and H{ () are denoted by |glo = (q,q)1/2, |v]1 = |Vv|o, respectively. In what
follows, since no confusion may arise, we will use the same notations for the corresponding norms
and inner products in L?(Q)? and H&(Q)2 as in L2(Q) and Hg(Q), respectively.
We also define H?(§2)-seminorm | - |5 by
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and set the function spaces

{ve H&(Q)2 ; dive =0},

Finally, we define H_I(Q)2 as the dual space of H&(Q)2 and < -, > as the duality pairing
between fIﬁl(Q)2 and H&(Q)2.
2 Numerical estimates for inf-sup condition

In this section, we rewrite the Stokes equations (1.1) to the weak form and give the numerical
estimates of a constant related to the inf-sup condition which assures the existence of a weak
solution. Using this constant, we present some norm inequalities for each element of S.

2.1 Variational formulation

We introduce a bilinear form £ on & X S by
E([u,p],[u,q])EI/(Vu,V'U)—(p,divv)—(q,divu) [uap]a [U>Q] €S. (21)
Then, the standard variational formulation of (1.1) is given by

{ find [u,p] € S such that (2.2)

L([u,pl,[v,q]) = (fiv)  V[v,ql €S



It is well-known (cf.[4]) that (2.2) has a unique solution in S and there exists a constant 8. > 0
only depend on 2 such that £ satisfies the following condition :

L
inf sup ([U,p], [U7 Q]) 2 ﬁc- (23)
wreS  pges Ut Fplo)(vli +glo)
[u,p]#0 [v,q]#0
From (2.3), we get

sup
[v.a1eS [l + lalo

[v,q]#0

> Be(Julr + [plo) V[u,p] € S.

Now, for [u,p] € S, we define 6(u,p) by

wp) = sup Zlnphv.d)
olep) = [U,q]fg [vl +lglo (2.4)

[v,q]#0

In the remainder of this section, we attempt to bound estimate |u|; and |p|o using above é(u, p).
For this purpose, we use the following lemma (proof is in [4]).

Lemma 2.1 (Babuska-Aziz) For all ¢ € L3(R), there exists a unique v € V- such that

dive = ¢, (2.5)

1
[vl1 < = lalo. (2.6)
B
where B > 0 s a constant depending only on €.
By virtue of Lemma 2.1, we obtain

—(p,diva)

inf
in sup hr Ilo

(2.7)
pEL2(R) weH ()2
p#0 u#0

This condition (2.7) is called inf-sup condition for £ which assures that problem (2.2) has a unique
solution in §. If Q is a general bounded connected domain, it is difficult to estimate an explicit
upper or lower bound of 3. However, if Q is the star shaped domains (i.e. including the case of
convex polygons), this constant § can be numerically determined due to the following Horgan’s
lemma ([5]).

Lemma 2.2 (Horgan) Suppose that ) is a star-shaped domain with respect to a point, which we
choose to be the origin. Let the boundary be represented in plane polar coordinates by
r=f(#) on 99

1 2
f’(9)>2 * L)l
FO)=< |1+ < + .
) { 70) 7(0)
Then, for the constant 3 wn Lemma 2.1, the following estimate holds :
1

3 <. J14 mgux]:(H). (2.8)

For the special case, if §2 is a square, we have 1/8 < 2.614. Moreover, Horgan conjectures that
the optimal constant for a square would be 1/8 = /7/2 ~ 1.871.

and let




2.2 Norm inequalities

Now, using a constant 3, we can describe the following inequalities.

Theorem 2.1 For all [u,p] € S, let us define 6(u,p) by (2.4), then the following estimates hold :
1 1\:
2

Iplo < (; 52> 6(u,p).

Proof. Since V is a closed subspace of H&(Q)2, we have the decomposition

(2.9)

H{(Q)=VaVvt
Therefore, each u € H&(Q)2 can be written as
U =W + Uug w eV, uOGVL.
If w # 0, taking v = w, ¢ = 0 in the definition of §(u,p), we have

v(Vw,Vw) — (p,divw)

[w|y

6(u,p) >

Since w € V', we get
8(u,p) > v|w|, (2.10)
and this also holds for the case that w = 0.
On the other hand, if ug # 0, taking v = 0 in (2.4) implies

6(u7p)|Q|0 > _(Q7divu0) Vq € L(Q)(Q)

By Lemma 2.1, we can take ¢ as divug = —q and Sluo|1 < |g|o. Then we have

&(u,p) > Bluols, (2.11)

and it is clear that (2.11) holds for the case that ug = 0.
Therefore, from (2.10) and (2.11) we have

luli> = |wli® + |uor”

< (1 ﬁ2> 5(u,p)®.

Next, for all p € L2(Q), if p # 0, by Lemma 2.1, we can take v € V' satisfying
a ol < 5ol
ive = —p, |v|]1 < =|plo-
p
Since ( Vu, Vv ) = (Vug, Vv ), we get

I/(VU(),V’U) B (q,divuo) + |p|02

8(u,p) > o+ 12l Vg € L§(%2).
If up # 0 we take ¢ € L3(€2) such that
v(Vugy, Vv) .
K = W q = Kdlvuo.



This implies that v( Vug, Vv ) — (¢,divug ) = 0. Moreover, from (2.6),
juoh < ldivuol
Ugl1 S —=|d1vuplo-
B

Hence, we get

gl = v|(Vug, Vo)
’diV’U,()|0
< Pluolilvh
- |divu0|0
v
S @|p|07

and this inequality follows for the case that uy = 0, by taking ¢ = 0.
Consequently, we obtain

2
Sup) > M
v
B’P|0 + @’Pb
1 v\t
= B + @ ’P|0-
It is clear that the above inequality holds for p = 0. O

3 An a posteriori error bound

In this section, we introduce some finite element subspaces for the approximation of the velocity
and the pressure, and show an a posteriori error bound for the Stokes equations using Theorem
2.1.

3.1 Finite element subspace

Let 7j, be a family of triangulations of  C IR?, which consist of triangles or quadrilaterals depen-
dent on a scale parameter h > 0. For 7, we denote by X;, C Hg(Q2)NC(Q) and Y, C LE(Q)NC(Q)
the finite element subspaces for the approximation of the velocity u and the pressure p, respectively.
And we set S, = X7. Then the standard finite element solution to (2.2) is defined by

find [up,pn] € Sp x Y} such that (3.1)
L([un,pn)s [vnsqn] ) = (fyvn)  VY[vw,qn] € Sp X Ya. '

Now, we introduce a post-processing procedures proposed by [15]. We define X} as a subspace of
H1(Q) in which the basis of X} are the union of the basis of S}, and base functions corresponding
to nodes on the boundary 9¢2. Note that

X, C XjCcHY(Q), Xn#X;.

We also define L2-projection Py : L*(Q) — Xp,, L>-projection Py : L*(Q) — X; and Hj-
projection Py : H}(Q2) — X}, by

(v—"Pow,¢) = 0 Ve X,
(v—pov,gb) Vo € X,
(V(v—Pv),Vp) = 0 Vo € Xy,

|
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respectively. For wy, € X}, we define Vwy, € (X})? and Awy, € L?(Q2) by
th = (Poi

Aw, = divVuwy,

respectively. By virtue of a direct consequence of the argument in [15], it can be shown that for
all vy, € Sy, the following properties hold:

(—Avp, ¢) = (Yo, Vo) Vg € H(Q)?, (3.2)
Vo, =V = inf — Vuyo. 3.3
Vo, vplo whe(X}%I)lzx(X}*z)Z |wp, vrlo (3.3)

Now, we assume, as the approximation property of X}, the following
Assumption 3.1

fir}g lv — €&y < Cohlvly Yo € HY Q)N H*(Q), (3.4)
€EAR

where Cy 1s a positive constant independent of v and h which can be numerically determined.

This assumption holds for many finite element subspaces (cf. [3], [6], [8]). From the properties of
projection P, Assumption 3.1 and Aubin-Nitche’s trick, for all v € H{ (),

v — Pl < o)y,
]v—P1v|0 < C()h|v|1

hold.

3.2 an a posteriori estimate
Let [u,p] and [up,pr] be the solutions of (2.2) and (3.1), respectively. And set
{ en = U — up,
€h =P — Ph-
We will now estimate an upper bound of §(ep,e). For all [v,q] € S, from the definition of £, we
get

L([en,en], [v,q]) = v(Ven, Vv) — (ep,dive ) — (g, divey ). (3.7)
On the other hand, by (2.2) and (3.1), for all [{, gn] € Sh X Y,
v(Ven, V&) — (en,divén) — (gn,dives ) =0 (3.8)
holds. Taking ¢, = 0 in (3.8), for all &, € Sy, we have
v(Ven, V&) — (ep,divéy ) = 0. (3.9)

From (3.7) and (3.9) we have

L(len,enl,[v.q]) = v(Ven, V(v —=E&)) — (en,div(v —&n)) — (g,diven)
= v(V(u—up),V(v=&)) = (p—prdiv(v—&)) + (g, divu).
Moreover, by virtue of (3.2), Green’s formula and Schwarz’s inequality, we obtain
L([en,en),[v,q]) = v(Vup — Vup, V(v —&,)) +v(Vu — Vauy, V(v — &) )

—(p = pn,div(v = &) ) + (g, divup)
v(Vup — Vup, V(v —&,)) +v < —Au+ Aup,v — &, >
+ < V(p—pn)v—=E > +(g divuy)
v(Vup, — Vup, V(v —&)) + (f +vAup — Vpp,v — &) + (g, divay)
vV, = Vuglo [v = &nli + [vAuy — Vi + flolv = &nlo + [divup]o |glo-

IN



Now, we set £, € S}, as an elementwise H}-projection of v, i.e., £, = (Pjvy, Pivy), then using (3.5)
and (3.6), we have

L(len,en), [v,q]) < (v[Vun = Vauplo + CohlvAuy — Vpp + flo + [divun|o)(Jv]1 + |glo)-
Thus, the following result is obtained:
Lemma 3.1 For all [v,q] #0 in S,

L([en, enl; [v,q])
[vl1 + lalo

< v|Vuy — Vuplo + Coh|lvAuy — Vpn + flo + |divus|o

holds.

From Theorem 2.1 and Lemma 3.1, we have the following a posteriori error bounds for finite
element solutions of the Stokes equations.

Theorem 3.1 (a posteriori error bounds) Let [u,p] and [up,pn] be solutions of (2.2) and
(3.1), respectively. Then, the following a posteriori error bounds are obtaied :

1 1 1/2
|7-" - uhll < <_2 + @) C(uprh),
v (3.10)

|p — pulo < <; + ;2> C(un, pn),

where C(up, ppn) 18 an a posteriori error estimator which can be computed using the finite element
solutions [up, pr] by

C(un, pn) = v|Vuy, — Vauplo + Coh|lvAuy, — Vpy + flo + |divaug]o- (3.11)

Proof. From Theorem 2.1, we have immediately

1 1\:2

lu —up|1 < T 7 6(en,en),
1 v

Ip — prlo < (ﬁ + 52> o(en,en).

On the other hand, from Lemma 3.1,

L €hs Enls [Us 4
6(en,en) =  sup ([|v| +]| [| D < C(un, pn)
[o.]eS 1 qlo
[v,q]7#0
holds, then we get the desired conclusion. O

By virtue of (3.1) and (3.3), it is expected that each term in the right hand side of (3.11) tends
to be smaller as h is.

4 Constructive a priori error bounds

In Section 3, we proposed an a posteriori error bound for finite element solutions of the Stokes
problem. In this section, using the similar techniques in the previous section, we consider two
kinds of method to derive the constructive a priori error bounds and describe a computational
procedure for the estimation of a priori constants.



4.1 a priori estimates

The first method is based on the result of an a posteriori error bound proposed in Section 3. For

f € L?(Q)?, we define Pof € Sy, by
Pof = (Pof1, Pof2)".
The property of L?-projection implies

|f = Poflo® = flo” — |Poflo’,

hence, we can write for some 0 < 0 < /2,

|Poflo = |flosin®,
(4.1)
|f = Poflo=1|flocost.
Now, we suppose that there exist the constants K7, Ky and K3 such that
[Vup, = Vaplo < K1|Poflo, (4.2)
|Aup, = Vpr + Poflo < Ka|Pof o, (4.3)
|divuplo < K3|Poflos (4.4)

independent of f € L?(Q)%2. We describe later how to determine these constants. Then, we have
the following theorem.

Theorem 4.1 (a priori error bound I)  For each f € L*(Q)?, we have

1 1\
=i < (554 3) O,

1 v
p—pulo < (ﬂ + m) () |flo,

where

C(h) = \/(vK1 + Coh Kz + K3)? + (Coh)?. (4.6)
Proof. For all f € L?(Q2)?, from (3.11), (4.2), (4.3), (4.4) and (4.1), we have

Clup,pr) = v|Vuy — Vuylo + CohlvAuy, — Vpp + Pof + f — Poflo + |divaug]o
vEKi|Poflo + Coh( Ka|Poflo + |f — Poflo) + Ks|Poflo

= ((vK1+ CohKy + K3)sinf + Cohcos0) | flo

((vKy + CohKy + K3)? + (Coh)2)% | flo

C(h) | flo-

VAN
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a
The second method is the direct estimation without Vuy or Auy. From (3.7) and (3.9), we
have, for each &, € Sy,

L([en,enls [v,q]) = v(V(u—up), V(v — &) ) — (p — pr,div (v — &n) ) + (g, divug ).

Now, taking &, as
vh = (Pvy, Prog)”,

the property of Hg-projection implies that

L([en,en], [v,4q]) = v(Vu, V(v —vp)) — (p — pr,div (v —vp) ) + (g, divauy ).



Hence, by Green’s formula, Schwarz’s inequality and (3.6), we get

L(len,enls[viq]) = (f = Vpp,v —vp) + (g, divuy)
|f = Vonlo Coh |v]1 4 |qlo |divaugo

<
< (Coh|f = Vprlo + |divaglo )(|v]1 +|qlo)-

Therefore, we have the following lemma.

Lemma 4.1 For all 0 # [v,q] € S,

[,([eh,ah], [U,q])
[v]1 + |qlo

< Coh|f — Vpplo + |divuglo

holds.

Therefore, by virtue of Lemma 4.1, we can also take C(up,pp) in Theorem 3.1 as
C(un,pn) = Coh|f — Vpplo + [divuslo.
We now suppose that the constants K4 can be taken as
| — Vpn + Poflo < K4|Poflo- (4.7)

independent of f € L?(Q2)2. Here, K, will be determined in later part of this section. Then, we
obtain another a priori error bound as follows:

Theorem 4.2 (a priori error bound II)  For all f € L?(Q)2, it holds that

11\
u=wh < (55 +5) e,

1 v
P pulo < <E + @) () |flo,

where

C(h) = \/(Coh Ky + K3)? + (Coh)?. (4.9)

Proof. For all f € L?(Q2)?, from (4.4), (4.7) and (4.1), we obtain

Coh| — Vpn + Pof + f — Poflo + |divuglo
Coh( K4l Poflo+|f — Poflo) + K3|Poflo
((CohK4 + K3)sin@ + CohcosO) | flo
C(h)|flo-

C(un,pn)

IA

IN

4.2 Computation of the constants C(h)

Now, we show a method to estimate a priori constant C'(h) appeared in (4.6) and (4.9).
Let us define dim X} = n, dimY, = m and dim X; = n. From the definition of X}, and X},
we have . > n. Next, we denote base functions of X, Y3 and X} by {¢;}1<j<n, {¥j}1<j<m and

{qgj}lgjgﬁ, respectively.



Now, using real coefficients {a(l)}1<j§n, {a§2)}1§j§n and {b;}1<j<m, we can uniquely represent

(2))T € Sy, and pp, € Y}, of the form:

the finite element solution up = (u,”,

g = 3,
=1

uglz) = Za£2)¢i7
=1

> bithi.
=1

Prn =

Then, using base functions of X, Y}, we rewrite (3.1) as

¢
=1

3" (Vei Vo)

\ i=1

Now, we define, denoting the M x N matrix by (--

a1:(

as =

a =

f, =

Additionally, we set

S al (Ve V) —

by b2,...,

(fr,01),(fr,2),..
(f2,01), (f2,02),.-

v
2nx1

(
(a1
= (
(
(

=1
sz T/Ju% = (f27¢])

dP; e 9¢;
Z (1)(1/’], i)_z (2)(¢]a ¢) = 0
=1

)MxN>
a\", a ol ),_' (U)lxm
ai’,a ). ag))lm,
)1><2n7
m)1xms

(V¢27 V¢J )ana

Dy 0
0 Dy ’
2nX2n

% 0

(1/)17 ) (%7(75]) ’

(%—)——(—
(Ee Ey)

mx2n?

_ET

D
—-F 0

10

(fl ¢n) )n)(l)
(f27¢n) )n><17

) (2n4+m)x(2n+m)

(4.10)



Then, (4.10) can be represented as

Dy 0 —(E)T a’ f
0 D() —(Ey)T a2T = f2
~-E, —-E, 0 b’ 0

Consequently, (3.1) is equivalent to the following linear equation :

al f
o(8)-(1) "

We assume that the symmetric matrix G is invertible, which usually follows by so-called discrete
inf-sup condition, and the inverse matrix G~! is represented as

G, GT
71 L a b
(G )ZJ - < Gb G*

7

) (2n+m)Xx(2n+m)

where G4, Gy and G, are 2n X 2n, m X 2n, m X m matrices, respectively. Then, we have the

following representation of the finite element solution [up,py] € Sy X Y}, satisfying (3.1).
{ al = G,f,

4.12
bl = G,f. (412)

Next, we represent Vuy, using coefficients of uy. Since Vuy, = (Vugl),VUg)) € (X7)? x (X})?,
using real coefficients {c§-1)}1§j§ﬁ, {622)}18-3;1, {dgl)}lsjsﬁ and {d§-2)}1§j§ﬁ, we can uniquely write
Vuy, of the form:

n

Vul) = (3 Vg, a7,
=1 7

=1

v“g) = ( Z 02(2) €£z’a Z d1(;2) QASZ )T-
=1 =1

Also set - ) ) ) )
Ci = (Cg )7cg )7"'7651))1><ﬁ7 d, = (dg )7dg )7"'7d$‘1)>1><ﬁ7
C2 = (cg2)7cg2)7"'7c%2))1><ﬁa d2 = (dg2)7dg2)7"'7d§}2))1><ﬁ-

From the definition of L2-projection, for each 1 < j < 7, we have

=1 V =1 8y
Therefore, setting
(IA—’)Z] = (ggiaggj )ﬁxﬁ’
d¢; 9,
(Km)lj - ( ad; 7¢_7) = _(d)h % >n><n,
i - 8¢,
5 = (524 = (6, 00)

11



we get

lez = ale, dlf/ = ale.

Similarly, we have
C2L = asz, d2L = aQKy.

Hence, the following relations hold because of the invertibility of L.

Lemma 4.2 If we set n X n matrices M* = Krf/_l, MY = Kyf/_l, then Vuy, is represented as

C1 :alMI, d1 :alMy,
(4.13)

Co :agMI, d2 :agMy.

Now, we describe how to estimate |P0f|02, |Vuy, — Vauglo, [vAun — Vpn + flo, |divauslo and
| — Vpp, + Py f|o using the vector f.

Lemma 4.3 We define the n x n matrix L and the 2n X 2n matrix F by

()i = (Dis®5)psems

Lt o0
2nx2n

Then, |P0f|02 can be represented by a quadratic form :
|Poflo® = fTFf. (4.14)

Proof. For each f = (f1, f2)T, using real coefficients {q§1)}1§j§n and {qj(z)}lgjgn we can write

Pfi=Y ¢, Pfi=3 ¢ ¢
=1 =1

We set

(1) (1)

qIZ(Q1 yereslp @ (2

J1xns 92 = (¢, 4 )1xn-

Then, we have
q =L7'f, q=L""f,

Therefore, we obtain

|Poflo> = (Pofi,Pofi)+ (Pofa, Pof2)
ailql +q2Lq?

fTFf.
O
Lemma 4.4 We define the 2n X 2n matriz Q1, A1 by
Q)i = Dy — M*(K*)T — M¥(KY)T 0
i = 0 Do — M(K*)" —~ My(EYT )
(A1)ij = (GaQ1Ga )onx2n-
Then, K1 can be estimated as follows :
- 1
A 2
K < ( sup XT—1X> . (4.15)
xecR2r X Fx

12



Proof. From the definition of L?-projection and Lemma 4.2, we get
]?uh - Vuh|02 = (Vuh, Vuh) - (Wuh,Vuh)

aDaT — clf/clT — dli/le — CQﬁCQT — d2j—1d2T
= aDa’ —a;(M"(K")" + MY(KY)")a;” — ay(M*(K™)" + MY(KY)")a,

Dy — M*(K®)T + MY(KY)T 0 a;”
= (a17a2) _ z (77T y(ry\T T
0 D() M (K ) + M (K ) an
= anaT
= f1G,QiG.f
= fTAf.
O
Next, we define n X n matrices D, D™, DY as
8 9, 99, ~ 9; 99 A 9, 99,
DTy ’ DY, — , DYY)..
D)y = (G5 o D™= (G50 DMy =(GhG0)
and n X n matrices Em, E and EYY as
(E%%)ij = MED™ (M), (E™)ij = M*D™ (M), (EW)ij = MYDW(MY)], .,
and set 2n X 2n matrix £y by
(Ey) ( E™ + E™ 4 (E™)T + EW 0 )
1)ij = - - N .
0 E*® + E*Y + (E*Y)" + EWY S
We also define m x m matrix D by
(D)ij = (Vbi, V5 )
and 7. X m matrices Fm, me, Fve and FvY by
- 0¢; I - dg;
FrTy.. — t YV FEYY. . — 1 YY)
( )l] ( 8:C’ o )ﬁXm’ ( )Z] ( awa 8?,/ )ﬁXm,
: 09; : 0% 0,
Fvoy,. = 1 27 FY%),. = r 27
Py = (G520 = (GRS
Furthermore, we define 2n x 2n matrices Ey, E3 by
(Mxﬁ’m + Myﬁ'ym)Gb
(B2)ij = (MTF* + MYEW)G :
b 2nx2n
(Es) ( —(KLN (KT + KYLH(KY)T)L! 0 )
3)ij = -1 T F-1 Ty7—1 :
0 —(K*L Y(K*)* — KYL *(KY)")L omscom
Lemma 4.5 We define the 2n x 2n matriz Ay by
(A2)ij = V(Go)"E1Gy — vGoEy — v(GoEr)' — vG B3 — v(G,E3)"

GIEF + (GIEF)' + GI DGy, + F.

Then, Ko can be estimated as follows :

1
TA 2
Ky < ( sup 2 ) (4.16)

xecR2r X FX
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Proof. Expanding |[vAuy — Vpy, + P0f|02, we have

— 2 PR — PR —
|[vAup, — Vp + Pofle” = 1/2( Aup, Aup ) — v( Aup, Vpp ) — v(Vpp, Auy, )

+v(Aup, Pof )+ v(Pof,Aup ) — (Vpu, Pof)
~(Pof, Vipn) + (Vpn, Vpn) + [Poflo”.

We will represent each term by the quadratic forms of 2n-dimensional vectors f, which is obtained

from the inner products of f as follows :

( Aup, Aup )

(Aup, Vpp)

(Vpn, Aup)

(Zuha POf)

(Pof,Z’th)

(Vphapo.f)

(POfavph)

(Vpha Vph)

akF a’

1 (G)TEG, f,

a; ( MPF™ + MYFY® ) bT +ay ( M"F* + MYFY ) b”
(MZ*E** 4 MY EFY)G,

(a1 az) - -
(M*F¥ + MYEY)G,,

aE2 f

7 G.E,f,

7 (G E)T £,

(ZUS),Pofl ) + (ZU%Q),Pofz)
ci(—K*)"q] +di(—K¥)"q] +ca(—K*)"q +da(—KY)"qj

—(M*(K*)T + MY(KY)T) L~ 0 fy
(a1 a2) 0 -k + v~k )\ g
—~(K*L~Y(K*)T + KYL~"(K¥)T)L~! 0 ¢
@ 0 (KLY (KT — KL (KY) T L
7' G, Esf,
f1(G.E3)Tt,
(% Pofl)‘f‘(%,Pofﬂ

ox’ Ay
b(-E.qf — Eyq;)
b(~E,L™'f, — E,L™'fy)

v (50 ) (1)

—fL(GTEF)TY,

bDb”
fTGT DGt

Therefore, we have

lvAuy — Vpn, + Poflo” = 7 Af.
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Next, we define n X n matrices D*®, D*¥ and DYY as

9¢; 9¢; d¢; 9¢; 9¢; 99,
D*®),;; = -7 D), = 77 DY), = 77
(D) = (GR 50 o D= (T oMy = (55
and 2n X 2n matrix Q3 as
D= DTy
(Q3)l] = ( (Dmy)T DYY ) .
2nXx2n
Then, we obtain the following lemma using these matrices.
Lemma 4.6 We define the 2n X 2n matriz As by
(A3>2] = ( GaQSGa )2n><2n-
Then, K3 can be estimated as follows :
T 1
A 2
K3 < ( sup ¥> . (4.17)
XeRZn X FX
Proof. From (4.12), we have
|d1V Uhl()z = alealT + alDryazT + as (Dmy)TalT + aszyazT
= anaT
= 1 G Q3G f
7 A5 f.
O
Finally, we obtain the following estimate of Kj.
Lemma 4.7 We define the 2n x 2n matriz Ay by
(A4)ij = (GLEF + (GLEF)" + GI DGy + F )apxon.
Then, K4 can be estimated as follows :
T 1
A 2
K, < < sup XT 4X> . (4.18)
XeRZn X FX
Proof. Expanding | — Vpy, + Pof|o?, by the proof of Lemma 4.5, we obtain
| = Vpn+Poflo® = (Vpn, Vo) = (Vpn, Pof ) = (Pof, Von ) + | Poflo”
= fTGTEFf +tT(GTEF)Tt + "G DGt + T Ff
= f'(GIEF + (GFEF)T + GI DGy + F )f
= 1AL
O

Note that estimates (4.15), (4.16), (4.17) and (4.18) are reduced to finding the maximum
eigenvalue of
Ax = ABzx

where A is a 2n X 2n symmetric matrix, B a 2n X 2n symmetric and positive definite matrix,
respectively. Then, using a procedure proposed by [15], we can estimate these eigenvalues.
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5 Numerical Examples

In this section we give several numerical examples for a posteriori and a priori error bounds.
Let Q be a rectangular domain in IR? such that Q = (0,1) x (0,1). We consider the following
Stokes problem :
—Au+Vp=f in Q=(0,1) x(0,1),
divu=0 in €. (5.1)
u=0 on Of.

Alsolet 6, : 0 =29 < 71 <--- <xy =1 be a uniform partition, and let 6, be the same partition
as 0; for y direction. We define the partition of Q by 6 = 6, ® éy. N denotes the number of
partitions for the interval (0,1), i.e. h = 1/N.

Further, we define the finite element subspace X} and Y, by X, = MZ(z) ® M3(y) where
M3(z), M3(y) are sets of continuous piecewise quadratic polynomials on (0,1) under the above
partition § with homogeneous boundary condition and set Y;, = M}(z) ® M{(y) N L3(2) where
Mi(z), M§(y) piecewise linear as well. Then, the matrix G in (4.11) is invertible because the
space X} X Y}, satisfies the usual discrete inf-sup condition (cf. [4]).

We can also take the constant v = 1, Cy = 1/(27) (cf. [8]) and 1/8? = 4 + 2V/2.

5.1 a posteriori error bounds

We take the vector function f = (fi, f2)7 as

fi = 50(—2z+y+zy),
fo = 20(1 —5zy).
In this case, |[up|[z~() ~ 0.52 and ||pn||r=(q) ~ 22.72, where || - [|f~(q) is the L°°-norm on Q.

We obtained the following a posteriori error bounds |u — up|; and |p — pplo:

| N | Ju—usls [ Ip —palo |
5 1.39353 4.70242
10 0.34405 1.16099
15 0.15184 0.51237
20 0.08502 0.28689
25 0.05421 0.18292
30 0.03752 0.12660

Figure 1 and Figure 2 shows the pressure and vector field on 2, respectively.

L0
L e S NN
" 0w L 7/ //////»’,H\)\\\\\ v
A R A A P SN
< \ - -
SIS R B R NS ST
ETUNRSEESEI IR, | 2 N NN
NEREtnetiiyes \ % 0 I A A ORI S O
'&“\\\“‘ | BRI /‘ll} |
i >g_4,r7'\'\\\\\\,//f// .
R VM\\\\\\,//;;H?“
SNt IE
T s 0
g 02 b VNANSS——e L, A
o . TN ST e
0o L L L L
> 0.0 0.2 0.4 0.6 0.8 1.0
< X-AXIS

Figure 1: pressure field p
Figure 2: vector field u = (uy,u9)
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Next, in order to examine the quality of our estimator, we choose the vector function f so that

U = (UI,UQ)T

u(z,y) = 202%(1 —z)*y(1—y)(1 - 2y)0
up(z,y) = —20y°(1 —y)’z(1 —z)(1 - 22),

and
p(z,y) = 4z(—1 + 2y)(102* — 152° 4 62* — 10y + 302y — 202%y + 10y* — 302y + 2022y?)

are the exact solutions for (1.1). In this case, |u|; = 4/7 ~ 0.571 and |p|o = 2/962/33/7 ~ 1.543.
We should adopt the quantity C'(up, pp) as the error estimator for both of the velocity and pressure
instead of the right-hand side of (3.10), because the error indicator is usually evaluated by the
quantity exclusive of the proportional constant independent of mesh size h. We obtained each
relative a posteriori error bounds |u — up|1/|ul1, [P — prlo/|plo as follows :

| N || Ju—unli/|ul1 | Ip = palo/Iplo |

) 0.37895 0.47369
10 0.08976 0.11220
15 0.03893 0.04866
20 0.02159 0.02698
25 0.01369 0.01711
30 0.00943 0.01180

In this case, we can compute exact norms |u—uy|; and |p—pplo. The ratio of the relative errors
between a posteriori error estimator by Theorem 3.1 to the exact norms is nearly independent of
N, namely 1.4 for the velocity and 1.3 for the pressure.

These examples show that our mathematically rigorous a posteriori error bounds have rate of
convergence with optimal order even if the exact solutions are unknown.

5.2 Constructive a priori error constants

We computed the a priori constants by using Theorem 4.2 because the computation is much simpler
than by Theorem 4.1. Figure 3 illustrates a priori error constants for the velocity and pressure of

(4.9):
1 1\'/? 1 v
respectively. These results confirm us the expected rate of convergence with optimal order.
The numerical examples are computed on FUJITSU VP2600/10 vector processor by the usual
computer arithmetic with double precision. So, the round off errors in these examples are neglected.
However, it should be sufficient for our present purposes.
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