Rayleigh-Bénard 対流の定常解に対する 精度保証付き数値計算 II

Yoshitaka Watanabe[†] Nobito Yamamoto[‡] Mitsuhiro T. Nakao[†] and Takaaki Nishida[§]

watanabe@cc.kyushu-u.ac.jp

[†]Kyushu University [‡]The University of Electro-Communications [§]Kyoto University

The Rayleigh-Bénard Problem

In 1916, Lord Rayleigh (Strutt, John William; 1842–1919) considered the problem of the onset of thermal convection in a plane horizontal layer ($0 \le z \le h$) of fluid heated from below*; T at z = h and $T + \delta T$ at z = 0.

*Rayleigh, J.W.S.: "On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side," *The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Ser.6*, Vol.32, pp.529–546 (1916).

Oberbeck-Boussinesq Equations

 $u_t + uu_x + wu_z = p_x + \mathcal{P}\Delta u,$ $w_t + uw_x + ww_z = p_z - \mathcal{P}\mathcal{R}\,\theta + \mathcal{P}\Delta w,$ $u_x + w_z = 0,$ $\theta_t + w + u\theta_x + w\theta_z = \Delta\theta.$

(u, 0, w): velocity field,

- p: pressure,
- θ : temperature,
- \mathcal{R} : Rayleigh number,
- \mathcal{P} : Prandtl number.

Rayleigh and Prandtl Number

For small \mathcal{R} , the fluid conducts heat diffusively.

Rayleigh and Prandtl Number

- **For small** \mathcal{R} , the fluid conducts heat diffusively.
- At a critial $\mathcal{R}_{\mathcal{C}}$, there is a forward bifurcation to steady convection.

Rayleigh and Prandtl Number

- **P** For small \mathcal{R} , the fluid conducts heat diffusively.
- At a critial $\mathcal{R}_{\mathcal{C}}$, there is a forward bifurcation to steady convection.

Fluid	Prandtl number		
Mercury	0.025		
Air	0.71		
Water	6.7		
Freon 113	7		
Silicone oil	860		

Lord Rayleigh(1916) Considered the linearized stability and found $\mathcal{R}_{\mathcal{C}}$ when both the upper and lower boundaries are taken to be stress-free.

Lord Rayleigh(1916) Considered the linearized stability and found $\mathcal{R}_{\mathcal{C}}$ when both the upper and lower boundaries are taken to be stress-free.

Joseph(1965) There is a unique trivial solution for $\mathcal{R} < \mathcal{R}_{\mathcal{C}}$.

Lord Rayleigh(1916) Considered the linearized stability and found $\mathcal{R}_{\mathcal{C}}$ when both the upper and lower boundaries are taken to be stress-free.

Joseph(1965) There is a unique trivial solution for $\mathcal{R} < \mathcal{R}_{\mathcal{C}}$.

Iudovich(1966) and Rabinowitz(1968) For each \mathcal{R} slightly exceeding the critical Rayleigh number $\mathcal{R}_{\mathcal{C}}$, there are at least two nontrivial steady-state solutions.

Lord Rayleigh(1916) Considered the linearized stability and found $\mathcal{R}_{\mathcal{C}}$ when both the upper and lower boundaries are taken to be stress-free.

Joseph(1965) There is a unique trivial solution for $\mathcal{R} < \mathcal{R}_{\mathcal{C}}$.

Iudovich(1966) and Rabinowitz(1968) For each \mathcal{R} slightly exceeding the critical Rayleigh number $\mathcal{R}_{\mathcal{C}}$, there are at least two nontrivial steady-state solutions.

Kagei and Wahl(1997) The stability analysis of the bifurcated solution in a small neighbourhood of the bifurcation points is considered.

Lord Rayleigh(1916) Considered the linearized stability and found $\mathcal{R}_{\mathcal{C}}$ when both the upper and lower boundaries are taken to be stress-free.

Joseph(1965) There is a unique trivial solution for $\mathcal{R} < \mathcal{R}_{\mathcal{C}}$.

Iudovich(1966) and Rabinowitz(1968) For each \mathcal{R} slightly exceeding the critical Rayleigh number $\mathcal{R}_{\mathcal{C}}$, there are at least two nontrivial steady-state solutions.

Kagei and Wahl(1997) The stability analysis of the bifurcated solution in a small neighbourhood of the bifurcation points is considered.

Global structure of bifurcated solutions after the critical Rayleigh point \mathcal{R}_c has not been known *theoretically* up to now.

Restrict the problem to the rectangular region:

$\Omega := \{ 0 < x < 2\pi/a, \quad 0 < z < \pi \},\$

Restrict the problem to the rectangular region:

$\Omega := \{ 0 < x < 2\pi/a, \quad 0 < z < \pi \},\$

periodic boundary conditions (period $2\pi/a$) in the horizontal direction

Restrict the problem to the rectangular region:

$\Omega := \{ 0 < x < 2\pi/a, \quad 0 < z < \pi \},$

- periodic boundary conditions (period $2\pi/a$) in the horizontal direction
- stress-free boundary conditions ($u_z = w = 0$) on the surfaces $z = 0, z = \pi$

Restrict the problem to the rectangular region:

$\Omega := \{ 0 < x < 2\pi / a, \quad 0 < z < \pi \},$

- periodic boundary conditions (period $2\pi/a$) in the horizontal direction
- stress-free boundary conditions ($u_z = w = 0$) on the surfaces $z = 0, z = \pi$
- evenness and oddness conditions: $u(x,z) = -u(-x,z), \quad w(x,z) = w(-x,z), \quad \theta(x,z) = \theta(-x,z)$

The Stream Function Introduce the stream function Ψ , through the definitions:

$$u = -\Psi_z, \qquad w = \Psi_x$$

so that $u_x + w_z = 0$.

The Stream Function Introduce the stream function Ψ , through the definitions:

$$u = -\Psi_z, \qquad w = \Psi_x$$

so that $u_x + w_z = 0$.

Cross-differentiating the equation of motion in order to eliminate the pressure p and setting $\Theta := \sqrt{\mathcal{PR}\theta}$, we have

The Stream Function Introduce the stream function Ψ , through the definitions:

$$u = -\Psi_z, \qquad w = \Psi_x$$

so that $u_x + w_z = 0$.

Cross-differentiating the equation of motion in order to eliminate the pressure p and setting $\Theta := \sqrt{\mathcal{PR}\theta}$, we have

$$\begin{aligned} -\Delta \Psi_t + \mathcal{P} \Delta^2 \Psi &= \sqrt{\mathcal{P} \mathcal{R}} \Theta_x - \Psi_z \Delta \Psi_x + \Psi_x \Delta \Psi_z, \\ \Theta_t - \Delta \Theta &= -\sqrt{\mathcal{P} \mathcal{R}} \Psi_x + \Psi_z \Theta_x - \Psi_x \Theta_z. \end{aligned}$$

Stationary Problems Find the steady-state solutions to the following system:

 $\begin{cases} \mathcal{P}\Delta^{2}\Psi = \sqrt{\mathcal{P}\mathcal{R}}\Theta_{x} - \Psi_{z}\Delta\Psi_{x} + \Psi_{x}\Delta\Psi_{z} & \text{in } \Omega, \\ -\Delta\Theta = -\sqrt{\mathcal{P}\mathcal{R}}\Psi_{x} + \Psi_{z}\Theta_{x} - \Psi_{x}\Theta_{z} & \text{in } \Omega, \\ + & \text{imposed conditions.} \end{cases}$

$$\begin{split} \Omega &= & \{ 0 < x < 2\pi/a, \ 0 < z < \pi \}, \quad a > 0, \\ \Psi(x,z) : & \text{stream function}, \\ \Theta(x,z) : & \text{deviation of the temperature from the linear profile}, \\ \mathcal{P} : & \text{Prandtl number}, \end{split}$$

 \mathcal{R} : Rayleigh number.

Fourier Expansions

 Ψ and Θ can be represented by the following double Fourier expansions because of the imposed condition:

$$\Psi(x,z) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(amx) \sin(nz),$$

$$\Theta(x,z) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} B_{mn} \cos(amx) \sin(nz).$$

$$X^{k} := \left\{ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(amx) \sin(nz) \mid \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} ((am)^{2k} + n^{2k}) A_{mn}^{2} < \infty \right\}$$

$$Y^{k} := \left\{ \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} B_{mn} \cos(amx) \sin(nz) \mid \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} ((am)^{2k} + n^{2k}) B_{mn}^{2} < \infty \right\}$$

Approximate Subspaces

$$S_N^{(1)} := \left\{ \sum_{m=1}^{M_1} \sum_{n=1}^{N_1} A_{mn} \sin(amx) \sin(nz) \right\},\,$$

$$S_N^{(2)} := \left\{ \sum_{m=0}^{M_2} \sum_{n=1}^{N_2} B_{mn} \cos(amx) \sin(nz) \right\}.$$

Projection $P_N = (P_N^{(1)}, P_N^{(2)}) : X^4 \times Y^2 \longrightarrow S_N^{(1)} \times S_N^{(2)}$
$$\left\{ \begin{array}{ll} (\Delta^2 (P_N^{(1)} \Psi - \Psi), v_N^{(1)})_{L^2} &= 0 & \forall v_N^{(1)} \in S_N^{(1)}, \\ (\Delta (P_N^{(2)} \Theta - \Theta), v_N^{(2)})_{L^2} &= 0 & \forall v_N^{(2)} \in S_N^{(2)}, \end{array} \right.$$

where $(\cdot, \cdot)_{L^2}$ means the inner product on $L^2(\Omega)$.

A Priori Estimates I

$$\Delta^2 \Psi = g^{(1)} \qquad \left\{ \begin{array}{c} \Psi(x) \\ g^{(1)} \Psi(x) \end{array} \right.$$

$$\Psi(x,z) = \sum_{\substack{m=1 \ N_1}}^{\infty} \sum_{\substack{n=1 \ N_1}}^{\infty} A_{mn} \sin(amx) \sin(nz),$$
$$P_N^{(1)} \Psi(x,z) = \sum_{\substack{m=1 \ n=1}}^{M_1} \sum_{\substack{n=1 \ n=1}}^{N_1} A_{mn} \sin(amx) \sin(nz),$$

A Priori Estimates I

$$\Delta^{2}\Psi = g^{(1)} \begin{cases} \Psi(x,z) = \sum_{\substack{m=1 \ N_{1}}}^{\infty} \sum_{\substack{n=1 \ N_{1}}}^{\infty} A_{mn} \sin(amx) \sin(nz), \\ P_{N}^{(1)}\Psi(x,z) = \sum_{\substack{m=1 \ N_{1}}}^{\infty} \sum_{\substack{n=1 \ N_{1}}}^{\infty} A_{mn} \sin(amx) \sin(nz), \end{cases}$$

If $N:=M_1=N_1$, $a=1/\sqrt{2}$ and $\|\cdot\|_0:=\|\cdot\|_{L^2(\Omega)}$,

$$\begin{split} \|\Psi - P_N^{(1)}\Psi\|_0 &\leq \frac{1}{((N+1)^2/2+1)^2} \|g^{(1)}\|_0 &\sim O(1/N^4), \\ \|\nabla(\Psi - P_N^{(1)}\Psi)\|_0 &\leq \frac{N+1}{((N+1)^2/2+1)^2} \|g^{(1)}\|_0 &\sim O(1/N^3), \\ \|\Delta(\Psi - P_N^{(1)}\Psi)\|_0 &\leq \frac{N+1}{((N+1)^2/2+1)^{3/2}} \|g^{(1)}\|_0 &\sim O(1/N^2), \\ \|\nabla(\Delta(\Psi - P_N^{(1)}\Psi))\|_0 &\leq \frac{N+1}{(N+1)^2/2+1} \|g^{(1)}\|_0 &\sim O(1/N). \end{split}$$

A Priori Estimates II Moreover, L^{∞} -estimates can be obtained, for example, $\|\Psi - P_N^{(1)}\Psi\|_{L^{\infty}(\Omega)} \leq 0.18927 \|\Psi - P_N^{(1)}\Psi\|_0 + 1.1894 \|\nabla(\Psi - P_N^{(1)}\Psi)\|_0$ $+1.4430 \|\Delta(\Psi - P_N^{(1)}\Psi)\|_0$

using the results: $H^2(\Omega) \hookrightarrow C^0(\bar{\Omega})$ by M. Plum (J. Math. Anal. Appl. 165, 1992).

A Priori Estimates II Moreover, L^{∞} -estimates can be obtained, for example, $\|\Psi - P_N^{(1)}\Psi\|_{L^{\infty}(\Omega)} \le 0.18927 \|\Psi - P_N^{(1)}\Psi\|_0 + 1.1894 \|\nabla(\Psi - P_N^{(1)}\Psi)\|_0$ $+1.4430 \|\Delta(\Psi - P_N^{(1)}\Psi)\|_0$ using the results: $H^2(\Omega) \hookrightarrow C^0(\bar{\Omega})$ by M. Plum (J. Math. Anal. Appl. 165, 1992). $-\Delta\Theta = g^{(2)} \begin{cases} \Theta(x,z) = \sum_{\substack{m=0 \ M_2}} \sum_{\substack{n=1 \ M_2}}^{\infty} B_{mn} \cos(amx) \sin(nz), \\ P_N^{(2)}\Theta(x,z) = \sum_{\substack{m=0 \ m=0}}^{\infty} \sum_{\substack{n=1 \ M_2}}^{\infty} B_{mn} \cos(amx) \sin(nz), \end{cases}$ If $N := M_2 = N_2$, $a = 1/\sqrt{2}$, $\begin{aligned} \|\Theta - P_N^{(2)}\Theta\|_0 &\leq \frac{1}{(N+1)^2/2 + 1} \|g^{(2)}\|_0 &\sim O(1/N^2), \\ \|\nabla(\Theta - P_N^{(2)}\Theta)\|_0 &\leq \frac{N+1}{(N+1)^2/2 + 1} \|g^{(2)}\|_0 &\sim O(1/N). \end{aligned}$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.13/3

Transform to the residual equations using approximate solutions

- Transform to the residual equations using approximate solutions
- **P** Rewrite as the fixed point equation: u = Fu

- Transform to the residual equations using approximate solutions
- **P** Rewrite as the fixed point equation: u = Fu
- Divite u = Fu into $\begin{cases}
 P_N u = P_N Fu & \text{finite dimensional part} \\
 (I - P_N)u = (I - P_N)Fu & \text{infinite dimensional part}
 \end{cases}$

- Transform to the residual equations using approximate solutions
- **P** Rewrite as the fixed point equation: u = Fu
- Divite u = Fu into $\begin{cases}
 P_N u = P_N Fu & \text{finite dimensional part} \\
 (I - P_N)u = (I - P_N)Fu & \text{infinite dimensional part}
 \end{cases}$
- Newton-like method apply to the finite dimensional part

- Transform to the residual equations using approximate solutions
- **P** Rewrite as the fixed point equation: u = Fu
- Divite u = Fu into
 $\begin{cases} P_N u = P_N F u & \text{finite dimensional part} \\ (I P_N)u = (I P_N)Fu & \text{infinite dimensional part} \end{cases}$
- Newton-like method apply to the finite dimensional part
- Set a candidate set U and check the criterion

 $\begin{cases} P_N FU \subset P_N U \\ (I - P_N) FU \subset (I - P_N) U \end{cases}$

Numerical Environment

Specification of numerical environment

machines	Alpha Server GS320		
OS	Tru64 UNIX V5.1		
software	Fortran V5.4-1283		
performance	Alpha 21264 731MHz		

- In verification step, interval arithmetic is used to take account of the effects of rounding errors in the floating point computations. We use Fortran 90 library INTLIB90 coded by R.B.Kearfott.
- Kearfott, R. B., and Kreinovich, V., Applications of Interval Computations, Kluwer Academic Publishers, Netherland, 1996. (http://interval.usl.edu/kearfott.html)

The Stationary Bifurcation

Rayleigh (1916) considered the linearized stability and found the critical Rayleigh number:

$$\mathcal{R}_{\mathcal{C}} = \inf_{m,n} \frac{(a^2 m^2 + n^2)^3}{a^2 m^2} = 6.75 \quad (m = 1, n = 1, a = 1/\sqrt{2}).$$

The Stationary Bifurcation

Rayleigh (1916) considered the linearized stability and found the critical Rayleigh number:

$$\mathcal{R}_{\mathcal{C}} = \inf_{m,n} \frac{(a^2 m^2 + n^2)^3}{a^2 m^2} = 6.75 \quad (m = 1, n = 1, a = 1/\sqrt{2}).$$

EXAMPLE: The velocity field $(-(\hat{\Psi}_N)_z, (\hat{\Psi}_N)_x);$
 $\hat{\Psi}_N = \sum_{m=1}^{M_1} \sum_{n=1}^{N_1} \hat{A}_{mn} \sin(amx) \sin(nz), \mathcal{P} = 10, \mathcal{R} = 50, M_1 = N_1 = 10.$

 $\hat{A}_{11} \approx 15.37$

The Bifurcation Diagram I

The Second bifurcation

At a Rayleigh number:

$$\mathcal{R} = \frac{(a^2m^2 + n^2)^3}{a^2m^2} = 13.5 \quad (m = 2, n = 1, a = 1/\sqrt{2}),$$

the second bifurcation from the trivial solution occurs.

The Second bifurcation

At a Rayleigh number:

$$\mathcal{R} = \frac{(a^2m^2 + n^2)^3}{a^2m^2} = 13.5 \quad (m = 2, n = 1, a = 1/\sqrt{2}),$$

the second bifurcation from the trivial solution occurs. EXAMPLE: The velocity field $(-(\hat{\Psi}_N)_z, (\hat{\Psi}_N)_x);$ $\hat{\Psi}_N = \sum_{m=1}^{M_1} \sum_{n=1}^{N_1} \hat{A}_{mn} \sin(amx) \sin(nz), \mathcal{P} = 10, \mathcal{R} = 50, M_1 = N_1 = 10.$

 $A_{21} \approx -7.026$

 $\hat{A}_{21} \approx 7.026$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.20/3-

The Second Bifurcated Solutions I The temperature

 $\theta = \delta T (1 - z/\pi - \Theta/\sqrt{\mathcal{RP}}\pi) + T, \qquad T = 0, \ \delta T = 5, \ \mathcal{P} = 10$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.21/34

The Second Bifurcated Solutions II The temperature

 $\theta = \delta T (1 - z/\pi - \Theta/\sqrt{\mathcal{RP}}\pi) + T, \qquad T = 0, \ \delta T = 5, \ \mathcal{P} = 10$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.22/34

The Second Bifurcated Solutions III

The temperature $\theta = \delta T (1 - z/\pi - \Theta/\sqrt{\mathcal{RP}}\pi) + T, \qquad T = 0, \ \delta T = 5, \ \mathcal{P} = 10$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.23/3

The Bifurcation Diagram II

The third bifurcation

At a Rayleigh number:

$$\mathcal{R} = \frac{(a^2m^2 + n^2)^3}{a^2m^2} = 1331/36 \quad (m = 3, n = 1, a = 1/\sqrt{2}),$$

the third bifurcation from the trivial solution occurs.

The third bifurcation

At a Rayleigh number:

$$\mathcal{R} = \frac{(a^2m^2 + n^2)^3}{a^2m^2} = 1331/36 \quad (m = 3, n = 1, a = 1/\sqrt{2}),$$

the third bifurcation from the trivial solution occurs. EXAMPLE: The velocity field $(-(\hat{\Psi}_N)_z, (\hat{\Psi}_N)_x);$ $\hat{\Psi}_N = \sum_{m=1}^{M_1} \sum_{n=1}^{N_1} \hat{A}_{mn} \sin(amx) \sin(nz), \mathcal{P} = 10, \mathcal{R} = 50, M_1 = N_1 = 10.$

 $\hat{A}_{31} \approx 2.029$

 $A_{31} \approx -2.029$

 $\theta = \delta T (1 - z/\pi - \Theta/\sqrt{\mathcal{RP}}\pi) + T, \qquad T = 0, \ \delta T = 5, \ \mathcal{P} = 10$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.26/34

 $\theta = \delta T (1 - z/\pi - \Theta/\sqrt{\mathcal{RP}}\pi) + T, \qquad T = 0, \ \delta T = 5, \ \mathcal{P} = 10$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.27/34

The Bifurcation Diagram III

Other bifurcation

At $\mathcal{R} \sim 32.5$, there exist another four nontrivial solutions:

? /

? 🗡

?

2nd bifurcated solution from trivial solution (1)

2nd bifurcated solution from trivial solution (2)

? 🗡

? /

?

?

 $\theta = \delta T (1 - z/\pi - \Theta/\sqrt{\mathcal{RP}}\pi) + T, \qquad T = 0, \ \delta T = 5, \ \mathcal{P} = 10, \ \mathcal{R} = 33$

2nd bifurcated solution from trivial solution (1)

The Other Bifurcated Solutions II

 $\mathcal{R} = 80$

 $\mathcal{R} = 60$

 $\mathcal{R} = 70$

研究集会・微分方程式の離散化手法と数値計算アルゴリズム - p.31/3

Verification Results

No.	N	$\ \hat{\Psi}_N\ _{L^2}$	$\ \hat{\Theta}_N\ _{L^2}$	$\ W_N^{(1)}\ _{L^{\infty}}$	$\ W_N^{(2)}\ _{L^{\infty}}$	$\ W^{(1)}_*\ _{L^{\infty}}$	$\ W_*^{(2)}\ _{L^{\infty}}$
1	45	17.44	34.89	1.40×10^{-9}	3.12×10^{-11}	2.46×10^{-11}	1.26×10^{-7}
2	45	17.44	34.89	1.40×10^{-9}	3.12×10^{-11}	2.46×10^{-11}	1.26×10^{-7}
3	30	8.14	30.57	2.35×10^{-6}	2.56×10^{-8}	7.75×10^{-8}	1.35×10^{-4}
4	30	8.14	30.57	2.35×10^{-6}	2.56×10^{-8}	7.75×10^{-8}	1.35×10^{-4}
5	50	9.62	29.43	9.75×10^{-9}	8.77×10^{-10}	6.96×10^{-11}	5.21×10^{-7}
6	50	9.62	29.43	9.75×10^{-9}	8.77×10^{-10}	6.96×10^{-11}	5.21×10^{-7}
7	50	9.62	29.43	9.75×10^{-9}	8.77×10^{-10}	6.96×10^{-11}	5.21×10^{-7}
8	50	9.62	29.43	9.75×10^{-9}	8.77×10^{-10}	6.96×10^{-11}	5.21×10^{-7}
9	20	2.84	19.49	3.40×10^{-5}	9.56×10^{-7}	1.75×10^{-6}	1.10×10^{-3}
10	20	2.84	19.49	3.40×10^{-5}	9.56×10^{-7}	1.75×10^{-6}	1.10×10^{-3}

 $\mathcal{R} = 60, \mathcal{P} = 10; N := M_1 = M_2 = N_1 = N_2$; matrix dimension = N(2N + 1). For each \mathcal{R} , there exists a solution $(\Psi, \Theta) \in X^3 \times Y^1$ in the candidate set:

$$\Psi \in \hat{\Psi}_N + W_N^{(1)} + W_*^{(1)}, \Theta \in \hat{\Theta}_N + W_N^{(2)} + W_*^{(2)}.$$

Verified Bifurcated Solutions

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.33/34

pLaTeX2e (based on LaTeX2e)

prosper.cls
(http://prosper.sourceforge.net/)

seminar.cls

研究集会・微分方程式の離散化手法と数値計算アルゴリズム – p.34/3