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Motivation

In numerical verified computations of stationary
solutions for the Rayleigh-Bénard convection, the
linear equations account for the most part of all
calculation.
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⇓
matrices: large scale and unsymmetry
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Linear Equations

Ax = b

A ∈ Rn×n, x, b ∈ Rn

x̂ ∈ Rn: approximate solution of x = A−1b

r := b − Ax̂ ∈ Rn: residual

‖x‖p =

(
n∑

k=1

|xk|p
)1/p

, ‖x‖∞ = max
1≤i≤n

|xi|

‖A‖p = max
x�=0

‖Ax‖p

‖x‖p
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Verification Algorithm

Krawczyk Operator

Let R ∈ Rn×n be an approximation of A−1,

K(X) := x̂−R(Ax̂− b)+ (I −RA)(X − x̂) ⊂ Rn.

If for X ⊂ Rn

K(X) ⊂ int(X)

holds then A is nonsingular and the unique
solution x = A−1b satisfies

x ∈ x̂ + K(X)
Workshop on High Performance Large Scale Computation and Guaranteed Accuracy Computation – p.4/29



Verification Algorithm

Krawczyk Operator ⇒ stable but slow

Let R ∈ Rn×n be an approximation of A−1,

K(X) := x̂−R(Ax̂− b)+ (I −RA)(X − x̂) ⊂ Rn.

If for X ⊂ Rn

K(X) ⊂ int(X)

holds then A is nonsingular and the unique
solution x = A−1b satisfies

x ∈ x̂ + K(X)
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LU Decomposition for Band Matrices

before LU decomposition

black: zero, white: non-zero
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Fill-in

before LU decomposition

black: zero, white: non-zero
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Fill-in

before LU decomposition after LU decomposition

black: zero, white: non-zero
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Aim

When A is unsymmetric or indefinite matrix, is
there any guaranteed accuracy method obtaining
the solution of the linear system without matrix
decomposition (LU , LDLT , LDM , CCT , QR,
etc.)?

‖x − x̂‖ < ε,
‖x − x̂‖
‖x̂‖ < ε,

‖x − x̂‖
‖x‖ < ε
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Aim

When A is unsymmetric or indefinite matrix, is
there any guaranteed accuracy method obtaining
the solution of the linear system without matrix
decomposition (LU , LDLT , LDM , CCT , QR,
etc.)?

‖x − x̂‖ < ε,
‖x − x̂‖
‖x̂‖ < ε,

‖x − x̂‖
‖x‖ < ε

conclusion

difficult!

Workshop on High Performance Large Scale Computation and Guaranteed Accuracy Computation – p.7/29



Validated Solution of Linear Systems
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Validated Solution of Linear Systems

Oishi-Rump
A ≈ LU

‖x − x̂‖∞ ≤ ‖(U−1L−1)(Ax̂ − b)‖∞
1 − ‖(U−1L−1)A − I‖∞
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Validated Solution of Linear Systems

Oishi-Rump Rump
A ≈ LU A ≈ LU

‖x − x̂‖∞ ≤ ‖(U−1L−1)(Ax̂ − b)‖∞
1 − ‖(U−1L−1)A − I‖∞

‖x − x̂‖∞ ≤ n1/2‖Ax̂ − b‖∞
σmin(LU) − n1/2‖LU − A‖∞

σmin(LU) ≥ σmin(L)σmin(U)

Workshop on High Performance Large Scale Computation and Guaranteed Accuracy Computation – p.8/29



Validated Solution of Linear Systems

Oishi-Rump Rump Yamamoto. N

A ≈ LU A ≈ LU A ≈ LDLT

‖x − x̂‖∞ ≤ ‖(U−1L−1)(Ax̂ − b)‖∞
1 − ‖(U−1L−1)A − I‖∞

‖x − x̂‖∞ ≤ n1/2‖Ax̂ − b‖∞
σmin(LU) − n1/2‖LU − A‖∞

σmin(LU) ≥ σmin(L)σmin(U)

smallest singular value
for symmetric matrix
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Smallest Singular Values

Let L, G̃ ∈ Rn×n, λ̃ ∈ R

E := G̃G̃T − (LLT − λ̃I).

If λ̃ ≥ ‖E‖ for some consistent matrix norm then

σmin(L) ≥ (λ̃ − ‖E‖)1/2.

S.M.Rump, Validated Solution of Large Linear Systems,

Computing Supplementum, Vol.9 (1993), pp.191-212.
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Smallest Singular Values

Let L, G̃ ∈ Rn×n, λ̃ ∈ R

E := G̃G̃T − (LLT − λ̃I).

If λ̃ ≥ ‖E‖ for some consistent matrix norm then

σmin(L) ≥ (λ̃ − ‖E‖)1/2.

S.M.Rump, Validated Solution of Large Linear Systems,

Computing Supplementum, Vol.9 (1993), pp.191-212.

If some reordering can be achieved (eg. symmmd of MATLAB),

Rump’s method or Oishi-Rump’s method is suitable.
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If some reordering can be achieved (eg. symmmd of MATLAB),

Rump’s method or Oishi-Rump’s method is suitable.

END!
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Smallest Singular Values

Let L, G̃ ∈ Rn×n, λ̃ ∈ R

E := G̃G̃T − (LLT − λ̃I).

If λ̃ ≥ ‖E‖ for some consistent matrix norm then

σmin(L) ≥ (λ̃ − ‖E‖)1/2.

S.M.Rump, Validated Solution of Large Linear Systems,

Computing Supplementum, Vol.9 (1993), pp.191-212.

If some reordering can be achieved (eg. symmmd of MATLAB),

Rump’s method or Oishi-Rump’s method is suitable.

END! ...but still have time
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Singular Value Decomposition

A = UΣV T

UUT = V V T = I, Σ = diag(σ1, . . . , σn),
U = (u1,u2, . . . ,un)
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Singular Value Decomposition

A = UΣV T

UUT = V V T = I, Σ = diag(σ1, . . . , σn),
U = (u1,u2, . . . ,un)

⇒ ‖x − x̂‖2 =

√√√√ n∑
i=1

1

σ2
i

(ui, r)2
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Singular Value Decomposition

A = UΣV T

UUT = V V T = I, Σ = diag(σ1, . . . , σn),
U = (u1,u2, . . . ,un)

⇒ ‖x − x̂‖2 =

√√√√ n∑
i=1

1

σ2
i

(ui, r)2

⇒ ‖x − x̂‖2 ≤ 1

σmin
‖r‖2
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New Aim

When A is unsymmetric or indefinite matrix, is
there any useful approximate method for the
smallest singular value without matrix
decomposition ?
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New Aim

When A is unsymmetric or indefinite matrix, is
there any useful approximate method for the
smallest singular value without matrix
decomposition ?

for 1 ≤ i ≤ n

σi ≥ 0

λi: eigenvalue of ATA −→ σi =
√

λi

(by renumbering)
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Rayleigh Quotient

ATAx = λx
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Rayleigh Quotient

ATAx = λx ⇒ σmin ≤ ‖Ax‖2

‖x‖2
≤ σmax x ∈ Rn.
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Rayleigh Quotient

ATAx = λx ⇒ σmin ≤ ‖Ax‖2

‖x‖2
≤ σmax x ∈ Rn.

a test using random matrix and vector
A ∈ Rn×n, xk ∈ Rn, k = 1, . . . , 1000000, n = 100.
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Rayleigh Quotient
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‖x‖2
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a test using random matrix and vector
A ∈ Rn×n, xk ∈ Rn, k = 1, . . . , 1000000, n = 100.

4.158 ≤ ‖Axk‖2

‖xk‖2
≤ 6.563
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Rayleigh Quotient

ATAx = λx ⇒ σmin ≤ ‖Ax‖2

‖x‖2
≤ σmax x ∈ Rn.

a test using random matrix and vector
A ∈ Rn×n, xk ∈ Rn, k = 1, . . . , 1000000, n = 100.

4.158 ≤ ‖Axk‖2

‖xk‖2
≤ 6.563

σmin ≈ 0.04524, σmax ≈ 11.27966
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Rayleigh Quotient

ATAx = λx ⇒ σmin ≤ ‖Ax‖2

‖x‖2
≤ σmax x ∈ Rn.

a test using random matrix and vector
A ∈ Rn×n, xk ∈ Rn, k = 1, . . . , 1000000, n = 100.

4.158 ≤ ‖Axk‖2

‖xk‖2
≤ 6.563

σmin ≈ 0.04524, σmax ≈ 11.27966

↑ as we say in Japanese, “TOHOHO”
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Approximation of ‖A−1‖1

Computes γ and y = A−1x such that γ ≤ ‖A−1‖1 with ‖y‖1/‖x‖1 = γ

x = (1, 1, . . . , 1)T /n

repeat

solve Ay = x

ξ = sign(y) and solve AT z = ξ

if ‖z‖∞ ≤ zT x

γ = ‖y‖1 and quit

end if

x = ej , where |zj | = ‖z‖∞ (smallest such j)

end
W.W.Hager, Condition Estimates,

SIAM J. Sci. Comput., Vol.5, No.2 (1984), pp.311–316.
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Inverse Iteration

Compute an approximation γ of the smallest singular value of A

set an initial guess x such that ‖x‖2 = 1
repeat

solve Ay = x

solve AT z = y

ξ = z/‖z‖2

if ‖ξ − x‖∞/‖ξ‖∞ ≤ ε (other norms or criterions are available)

γ = 1/
√‖z‖2 and quit

end if

x = ξ

end
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Inverse Iteration

Compute an approximation γ of the smallest singular value of A

set an initial guess x such that ‖x‖2 = 1
repeat

solve Ay = x Linear Equation

solve AT z = y Linear Equation

ξ = z/‖z‖2

if ‖ξ − x‖∞/‖ξ‖∞ ≤ ε (other norms or criterions are available)

γ = 1/
√‖z‖2 and quit

end if

x = ξ

end
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Solvers

“SVD”

Singular value decomposition A = UΣV T by Householder

transformation and implicit QR method with origin shift

“AT A”

Compute AT A and obtain the smalleset eigenvalue for the

symmetric matrix by Householder’s method and the

bisection method

Systems of linear equations for general matrices

(direct method)

GEPP LU decomposition with the partial pivoting

GECP LU decomposition with the complete pivoting
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Iterative Linear Solvers

Systems of linear equations with an unsymmetric
or indefinite matrix (iterative method)

MGCR Modified Generalized Conjugate Residuals method

BICGSTAB(l) Bi-Conjugate Gradient Stabilized(l) method

QMR Quasi-Minimal Residual method

TFQMR Tanspose-Free Quasi-Minimal Residual method

stopping criterion: (0=) x(0) → x(1) → x(2) → · · ·
‖Ax(k) − b‖2/‖Ax(0) − b‖2 < δ

*)all solvers are selected in subroutine library FUJITSU SSL II V5.1 except GECP with 64bit precision
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Example 1 (problem)

The elliptic partial differential operators:

Lu = −∆u + a1
∂u

∂x
+ a2

∂u

∂y
+ a3

∂u

∂z
+ cu

Ω = [0, lx] × [0, ly] × [0, lz]

u = 0 on ∂Ω

Discretization

each dimension of Ω is divided into nx + 1, ny + 1 and nz + 1 in
equal subintervals, respectively

the n := nx × ny × nz grid points exist inside Ω.

ui,j,k = u(xi, yj , zk)
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Example 1 (discretization)

∂u

∂x
(xi, yj, zk) � (ui+1,j,k − ui−1,j,k)(nx + 1)/(2lx)

∂2u

∂x2
(xi, yj, zk) � (ui+1,j,k − ui,j,k + ui−1,j,k)(nx + 1)2/lx

2

⇒ Lu � Av, A ∈ Rn×n, v ∈ Rn

The diagonal storage format

A ∈ Rn×n −→ Ã ∈ Rn×7
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Example1 (part1)

a1 = a2 = a3 = c = lx = ly = lz = 1, nx = ny = nz = 10,

n = 1000, δ = ε = 10−6.

method approximation rel.error No. time(sec.)

SVD 30.64520351314805 (assume exact) — 23.86

ATA 30.64520351315623 2.66 × 10−13 — 9.28

GEPP 30.64520351315346 1.76 × 10−13 9 5.60

GECP 30.64520351315355 1.79 × 10−13 9 21.61

MGCR 30.64520351317838 9.89 × 10−13 9 0.150

BICGSTAB(l) 30.64520351315359 1.80 × 10−13 9 0.099

QMR 30.64520351315866 3.46 × 10−13 9 0.177

TFQMR 30.64520351319651 1.58 × 10−12 9 0.220
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Example1 (part2)

a1 = a2 = a3 = c = lx = ly = lz = 1, nx = ny = nz = 10,

n = 1000, BICGSTAB(l)

−→ ‖Ax(n) − b‖2/‖Ax(0) − b‖2 < δ

ε 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15

10−1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10−2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
10−3 6 44 4 4 4 4 4 4 4 4 4 4 4 4 4
10−4 113 * 6 6 6 6 6 6 6 6 6 6 6 6 6
10−5 3937 * 17 7 7 7 7 7 7 7 7 7 7 7 7
10−6 * * * 9 9 9 9 9 9 9 9 9 9 9 9
10−7 * * * 11 12 11 11 11 11 11 11 11 11 11 11
10−8 * * * * * 15 13 13 13 13 13 13 13 13 13
10−9 * * * * 21 18 14 14 14 14 14 14 14 14 14
10−10 * * * * * * * 24 16 16 16 16 16 16 16
10−11 * * * * * * * 34 23 18 18 18 18 18 18
10−12 * * * * * * * * 4137 20 20 20 20 20 20
10−13 * * * * * * * * * 21 22 21 21 21 21
10−14 * * * * * * * * * 26 26 23 23 23 23
10−15 * * * * * * * * * * * 192 3149 361 69

inverse iteration u(0) → u(1) → u(2) · · ·
‖u(m) − u(m−1)‖∞/‖u(m−1)‖∞ < ε
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Example1 (part3)

a1 = a2 = a3 = 0, lx = ly = lz = 1, c = −29.4081,

nx = ny = nz = 10, n = 1000, δ = ε = 10−6.

method approximation rel.error No. time(sec.)

SVD 7.326361297367409 × 10−9 (assume exact) — 23.49

AT A
√−5.791468462355041 × 10−11 — — 10.56

GEPP 7.326403401427804 × 10−9 5.74 × 10−6 2 5.58

GECP 7.326355667100872 × 10−9 7.68 × 10−7 2 22.71

MGCR 7.326414257098979 × 10−9 7.22 × 10−6 2 5.57

BICGSTAB(l) 7.326411417040010 × 10−9 6.84 × 10−6 7 0.337

QMR 7.326412216218347 × 10−9 6.95 × 10−6 2 0.057

TFQMR 1.467167322152596 × 10−8 1.0025 2 13.37
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Example2 (problem)

A sample matrix which the growth factor
increases in the process of the Gaussian
elimination.

Solve

x(s) −
∫ s

0
k(s, t)x(t) dt + β(s)x(L) = G(s)

with Newton-Cotes and Simpson rule.

Foster, Leslie V.,
Gaussian Elimination with Partial Pivoting Can Fail in Practice,

SIAM Journal on Matrix Analysis and Applications, Vol.15, No.4, pp.1354–1362 (1994).
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Example2 (result)

n = 1000, δ = ε = 10−6.

method approximation rel.error No. time(sec.)

SVD 0.1583383270951388 (assume exact) — 23.89

ATA 0.1583383270962595 7.07 × 10−12 — 9.48

GEPP (failed) — — —

GECP 0.1583383270951446 3.66 × 10−14 12 22.96

MGCR 0.1583383270951908 3.28 × 10−13 12 46.29

BICGSTAB(l) 0.1583383270811897 8.80 × 10−11 12 113.8

QMR 0.1583383272836202 1.19 × 10−9 12 179.0

TFQMR 0.1583383270658000 1.85 × 10−10 12 222.8
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Example3 (Hilbert Matrix)

Aij = 1/(i + j − 1), δ = ε = 10−6.

dimension 8 × 8 9 × 9 10 × 10 11 × 11 12 × 12
σmin 1.11 × 10−10 3.49 × 10−12 1.09 × 10−13 3.39 × 10−15 1.04 × 10−16
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Example3 (Hilbert Matrix)

Aij = 1/(i + j − 1), δ = ε = 10−6.

dimension 8 × 8 9 × 9 10 × 10 11 × 11 12 × 12
σmin 1.11 × 10−10 3.49 × 10−12 1.09 × 10−13 3.39 × 10−15 1.04 × 10−16

AT A * * * * *

GEPP 1.27 × 10−8 1.05 × 10−6 5.62 × 10−7 8.11 × 10−4 5.81 × 10−2

GECP 4.93 × 10−8 4.47 × 10−7 8.06 × 10−6 3.07 × 10−4 2.05 × 10−4

MGCR 1.46 × 10−8 3.97 × 10−7 6.71 × 10−6 2.83 × 10−4 *

BICGSTAB(l) 7.29 × 10−9 4.56 × 10−8 * * *

QMR 2.92 × 10−8 2.98 × 10−6 1.94 × 10−6 6.72 × 1013 4.78 × 1014

TFQMR 2.28 * 19.58 30.76 5805
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Example4 (Random Matrices)

Generate 100 dense matrices. δ = ε = 10−6.

method succeed average precision average time(sec.)

SVD 100 (assume exaxt) 0.0131

ATA 100 0.215 × 10−6 0.0966

GEPP 100 0.539 × 10−12 0.0924

GECP 100 0.452 × 10−12 0.0158

MGCR 100 0.201 × 10−8 0.551

BICGSTAB(l) 100 0.586 × 10−9 3.36

QMR 95 0.240 × 1011 31.6

TFQMR 99 0.858 × 10−7 21.8
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Example5 (Rayleigh-Bénard Convection)




P∆2Ψ =
√PRΘx − Ψz∆Ψx + Ψx∆Ψz in Ω,

−∆Θ = −√PRΨx + ΨzΘx − ΨxΘz in Ω.

Ω := {0 < x < 2π/a, 0 < z < π}, a > 0.

Ψ ∈
{

M∑
m=1

N∑
n=1

Amn sin(amx) sin(nz)

}

Θ ∈
{

M∑
m=0

N∑
n=1

Bmn cos(amx) sin(nz)

}
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Example5 (Rayleigh-Bénard Convection)




P∆2Ψ =
√PRΘx − Ψz∆Ψx + Ψx∆Ψz in Ω,

−∆Θ = −√PRΨx + ΨzΘx − ΨxΘz in Ω.

Ω := {0 < x < 2π/a, 0 < z < π}, a > 0.

Ψ ∈
{

M∑
m=1

N∑
n=1

Amn sin(amx) sin(nz)

}

Θ ∈
{

M∑
m=0

N∑
n=1

Bmn cos(amx) sin(nz)

}

⇑
Fourier-Galerkin method combined Newton-Raphson method
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Example5 (result)

N = M = 10, n = 110, δ = 10−5, ε = 10−6.

Inverse iteration is until 100 times.

method approximation rel.error No. time(sec.)

SVD 131.8910693467725 (assume exact) — 0.015

AT A 131.8910681091155 9.38 × 10−9 — 0.029

GEPP 131.8910693472682 3.75 × 10−12 6 0.007

GECP 131.8910693472684 3.75 × 10−12 6 0.018

MGCR (not converged) — 100 606

BICGSTAB(l) (not converged) — 100 136

QMR (not converged) — 100 842

TFQMR (not converged) — 100 1136
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Conclusion
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Conclusion

The method “AT A” is no good.
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The method “AT A” is no good.

The methods based on LU decomposition seems to be

robust.
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Conclusion

The method “AT A” is no good.

The methods based on LU decomposition seems to be

robust.

Although the iterative solvers highly depend on the given

matrices, there is possibility of obtaining an good

approximation.
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Conclusion

The method “AT A” is no good.

The methods based on LU decomposition seems to be

robust.

Although the iterative solvers highly depend on the given

matrices, there is possibility of obtaining an good
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Conclusion

The method “AT A” is no good.

The methods based on LU decomposition seems to be

robust.

Although the iterative solvers highly depend on the given

matrices, there is possibility of obtaining an good

approximation.

⇓
How about your matrices and linear solvers ?

We can provide high performance computers and software to estimate singular values!

(9.6Gflops/CPU × 32)
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Problems to be Solve

other matrices and solvers

large scale or parallel computing

reordering or DM decomposition

acceleration

Rayleigh-quotient iteration

preconditioning and initial value

guaranteed accuracy

information in iterative process

stopping criterion / extrapolate error

benchmarks for linear solvers
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