多倍長関係の最近の結果

渡部 善隆

http://www.cc.kyushu-u.ac.jp/RD/watanabe/

2003年9月19日

日本応用数理学会 2003 年度年会 - p.1/24

■ 多倍長共役勾配法 ■ 数値実験結果 ■ 知見

■ 多倍長共役勾配法 ■ 数値実験結果 ■ 知見

4 倍精度区間演算による計算機援用証明 Orr-Sommerfeld 問題 検証結果 知見

共役勾配法(CG法)

set an initial vector \boldsymbol{x}_0 ; $\boldsymbol{r}_0 := \boldsymbol{b} - A \boldsymbol{x}_0$; $\boldsymbol{p}_0 := \boldsymbol{r}_0$; for $k := 0, 1, \cdots$ until $\boldsymbol{r}_k = \boldsymbol{0}$ do begin $\alpha_k := \frac{(\boldsymbol{r}_k, \boldsymbol{p}_k)}{(\boldsymbol{p}_k, A \boldsymbol{p}_k)};$ $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + lpha_k \boldsymbol{p}_k; \ \boldsymbol{r}_{k+1} := \boldsymbol{r}_k - lpha_k A \boldsymbol{p}_k;$ $eta_k := -rac{(oldsymbol{r}_{k+1}, Aoldsymbol{p}_k)}{(oldsymbol{p}_k, Aoldsymbol{p}_k)};$ $oldsymbol{p}_{k+1} := oldsymbol{r}_{k+1} + eta_k oldsymbol{p}_k$ end

共役勾配法の収束定理

共役勾配法の収束定理

\mathbf{z}^* を $A \mathbf{x} = \mathbf{b}$ の真の解,目的関数を

$$\phi(x) := (x - x^*)^T A(x - x^*)/2$$

とする A が対称かつ正定値であれば $\phi(\boldsymbol{x}_k)$ は 単調に減少し $\kappa = \lambda_N/\lambda_1 > 0$ に対して以下が成 立する .

$$\phi(\boldsymbol{x}_k) \le \phi(\boldsymbol{x}_0) \cdot 4\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2\kappa}$$

共役勾配法の収束定理

\mathbf{z}^* を $A \mathbf{x} = \mathbf{b}$ の真の解,目的関数を

$$\phi(x) := (x - x^*)^T A(x - x^*)/2$$

とする A が対称かつ正定値であれば $\phi(\boldsymbol{x}_k)$ は 単調に減少し $\kappa = \lambda_N/\lambda_1 > 0$ に対して以下が成 立する .

$$\phi(\boldsymbol{x}_k) \le \phi(\boldsymbol{x}_0) \cdot 4\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^2$$

A が対称かつ正則ならば,共役勾配法はほとんどすべての初期ベクトル x₀に対して高々 N 回の反復で厳密解を与える.

共役勾配法は,特に前処理を施すことにより次元数よ りもはるかに少ない回数で十分な精度を得られる場合 もある反面,停滞したり,ある回数を超えると収束が 速くなったりなど,ムラの多いことで知られている.

共役勾配法は,特に前処理を施すことにより次元数よ りもはるかに少ない回数で十分な精度を得られる場合 もある反面,停滞したり,ある回数を超えると収束が 速くなったりなど,ムラの多いことで知られている.

共役勾配法は,特に前処理を施すことにより次元数よ りもはるかに少ない回数で十分な精度を得られる場合 もある反面,停滞したり,ある回数を超えると収束が 速くなったりなど,ムラの多いことで知られている.

▲本当に N 回の反復で厳密解に到達するのか?

本当に N 回の反復で厳密解に到達するのか? 桁数を多く取るとどうなるか?

本当に N 回の反復で厳密解に到達するのか? 桁数を多く取るとどうなるか?

この「振動」は丸め誤差によるものか?

日本応用数理学会 2003 年度年会 - p.6/24

$$A = \begin{bmatrix} 2 & 1 & & \\ 0 & 2 & 1 & \\ \gamma & 0 & 2 & 1 & \\ & \gamma & 0 & 2 & \ddots & \\ & & \ddots & \ddots & \ddots & \end{bmatrix}, \quad \boldsymbol{b} = [1, \dots, 1]^T$$

$$A = \begin{bmatrix} 2 & 1 & & & \\ 0 & 2 & 1 & & \\ \gamma & 0 & 2 & 1 & \\ & \gamma & 0 & 2 & \ddots \\ & & \ddots & \ddots & \ddots \end{bmatrix}, \quad \boldsymbol{b} = [1, \dots, 1]^T$$

N	verifylss	区間 CG 法
10	2.2204e-16	10回目に破綻
20	2.2204e-16	10回目に破綻
100	2.2204e-16	12回目に破綻
1000	2.2204e-16	12回目に破綻

$$A = \begin{bmatrix} 2 & 1 & & \\ 0 & 2 & 1 & \\ \gamma & 0 & 2 & 1 & \\ & \gamma & 0 & 2 & \ddots \\ & & \ddots & \ddots & \ddots \end{bmatrix}, \quad \boldsymbol{b} = [1, \dots, 1]^T$$

N	verifylss	区間CG法
10	2.2204e-16	10回目に破綻
20	2.2204e-16	10回目に破綻
100	2.2204e-16	12回目に破綻
1000	2.2204e-16	12回目に破綻

失敗!

多倍長計算

今井 仁司: "応用解析における多倍長計算" 数学, Vol.55, No.3, pp.316−325 (2003).

幸谷 智紀: "CG 法の最短時間を探索する試み" 情報処理学会研究報告 2003-HPC-95, pp.1–6 (2003).

多倍長 Fortran モジュール FMLIB 1.2

- www.lmu.edu/acad/personal/faculty/dmsmith2/FMLIB.html
- 四則演算や Fortran の組込み関数の多くの多倍長 演算が利用可能
- ■計算環境
 - FUJITSU GP7000F model 900
 - Solaris 7
 - Fujitsu Fortran Compiler Driver Version 5.1

プログラム例

```
subroutine MATRIX_AND_VECTOR_MULTIPLY(A,b,x,N,DIGIT)
 use FMZM
  implicit none
  integer, intent(IN)
                                       :: N,DIGIT
  type(FM), dimension(N,N), intent(IN) :: A
  type(FM),dimension(N),intent(IN) :: b
  type(FM),dimension(N),intent(OUT) :: x
                                       :: i,j
  integer
  call FM SET(DIGIT)
  do i=1, N
    x(i) = TO_FM(0)
    do j=1,N
      x(i) = x(i) + A(i,j) * b(j)
    end do
  end do
end subroutine MATRIX_AND_VECTOR_MULTIPLY
```


行列とベクトルの積に要する時間 $(N = 200; \Xi U P)$

演算	桁数	時間
単精度演算	約6	1
倍精度演算	約14	2
4精度演算	約33	40
多倍長演算	10	1338
	100	1337
	1000	1442
	10000	2519

<u>対称行</u>列に対する共役勾配法を N 回反復させた時, 本当に真の解に到達するのか?

Hilbert 行列

$$A_{ij} = \frac{1}{i+j-1}$$

■正定値対称行列 ■条件数が約 exp(3.5N)

 $\bullet b_i = \sum_{j=1}^N A_{ij}$

完全ピボット選択付き Gauss の消去法による 直接解法 (4 倍精度)の計算結果とも比較

N回反復時の残差/誤差

$\mid N \mid$	10 桁	50 桁	100 桁	1000 桁	5000 桁	10000 桁	<i>LU</i> 分解
10	0.57E-8	0.82E-19	0.76E-52	0.39E-955	0.11E-4951	0.98E-9950	
	0.88E-4	0.75E-6	0.12E-51	0.65E-955	0.19E-4951	0.16E-9949	2.95E-22
20	0.51E-9	0.20E-21	0.39E-23	0.60E-779	0.74E-4776	0.31E-9773	
	0.20E-3	0.39E-7	0.65E-10	0.11E-778	0.14E-4775	0.58E-9773	1.25E-7
30	0.24E-12	0.30E-23	0.65E-25	0.30E-482	0.19E-4480	0.10E-9476	
	0.44E-4	0.38E-8	0.98E-11	0.61E-482	0.38E-4480	0.20E-9476	×
40	0.43E-13	0.15E-27	0.46E-32	0.49E-65	0.36E-4062	0.58E-9060	
	0.32E-4	0.11E-8	0.13E-11	0.28E-42	0.75E-4062	0.12E-9059	×
50	0.26E-12	0.67E-23	0.22E-33	0.44E-91	0.25E-3524	0.35E-8523	
	0.23E-4	0.25E-9	0.96E-13	0.11E-29	0.54E-3524	0.76E-8523	×
100	0.76E-9	0.46E-26	0.66E-35	0.11E-106	0.25E-203	0.31E-4029	
	0.52E-1	0.34E-10	0.12E-13	0.65E-37	0.50E-67	0.75E-4029	×

相対残差(上段)と相対誤差(下段)

LU 分解は4倍精度

弾性梁の曲げに関する行列

b = $[1, 0, ..., 0]^T$ 真の解 $x = [x_j]$ は

$$x_j = \frac{j}{6(N+1)}(N+1-j)(2N+2-j)$$

N回反復時の残差/誤差

N	10 桁	50桁	100桁	500桁	1000桁	10000 桁	<i>LU</i> 分解
10	0.54E-9	0.13E-50	0.37E-99	0.11E-498	0.13E-1002	0.14E-9997	
	0.64E-11	0.13E-52	0.34E-101	0.12E-500	0.13E-1004	0.12E-9999	0.14E-33
20	0.23E-1	0.42E-43	0.48E-92	0.23E-491	0.37E-995	0.18E-9990	
	0.10E-3	0.10E-45	0.11E-94	0.63E-494	0.89E-998	0.47E-9993	0.55E-31
100	0.32E-1	0.38E+0	0.26E-31	0.20E-430	0.48E-934	0.13E-9929	—
	0.99E+0	0.10E+1	0.25E-35	0.19E-434	0.46E-938	0.13E-9933	0.62E-27
200	0.42E-1	0.82E-1	0.29E-2	0.53E-354	0.41E-858	0.33E-9853	
	0.10E+1	0.10E+1	0.10E+1	0.12E-358	0.10E-862	0.81E-9858	0.27E-25
1000	0.20E-1	0.13E-1	0.14E-1	0.97E-1	0.18E-246	0.32E-9241	—
	0.10E+1	0.10E+1	0.10E+1	0.99E+0	0.18E-252	0.31E-9247	0.58E-21
2000	0.14E-1	0.14E-1	0.81E-2	0.24E-1	0.42E-1	0.25E-8476	—
	0.10E+1	0.10E+1	0.10E+1	0.10E+1	0.10E+1	0.61E-8483	0.37E-19

相対残差(上段)と相対誤差(下段)

<u>LU</u>分解は4倍精度

Harwell-Boeing Sparse Matrix Collection
http://math.nist.gov/MatrixMarket/
 LANPRO (NOS1)

- Finite element approximations to problems in structural engineering
- Biharmonic operator on a beam with one end free and one end fixed

positive definite matrix

- $\bullet 237 \times 237$
- $lacksim m{b} = [1,\ldots,1]^T$

次数回反復後の相対残差

		10桁	20桁	50 桁	100桁	1000桁	10000 桁
前処理	なし	0.11E+3	0.29E+3	0.34E+2	0.30E+3	0.69E-617	0.24E-9612
対角スケーリ	ング	0.10E+2	0.31E-1	0.23E-26	0.49E-75	0.20E-978	0.19E-9973

日本応用数理学会 2003 年度年会 - p.19/24

$$(-D^{2} + a^{2})^{2}u + iaR[V(-D^{2} + a^{2}) + V'']u = \lambda(-D^{2} + a^{2})u$$
$$u(x_{1}) = u(x_{2}) = u'(x_{1}) = u'(x_{2}) = 0$$

$$(-D^{2} + a^{2})^{2}u + iaR[V(-D^{2} + a^{2}) + V'']u = \lambda(-D^{2} + a^{2})u$$
$$u(x_{1}) = u(x_{2}) = u'(x_{1}) = u'(x_{2}) = 0$$

平面 Poiseuille 流れ:

$$V = 1 - x^2$$
, $x_1 = -1$, $x_2 = 1$.

$$(-D^{2} + a^{2})^{2}u + iaR[V(-D^{2} + a^{2}) + V'']u = \lambda(-D^{2} + a^{2})u$$
$$u(x_{1}) = u(x_{2}) = u'(x_{1}) = u'(x_{2}) = 0$$

平面 Poiseuille 流れ:

$$V = 1 - x^2$$
, $x_1 = -1$, $x_2 = 1$.

基本流の安定性

 λ の実部が正ならば流れ関数 ψ は減衰するため安定, 負ならば不安定.

Orr-Sommerfeld方程式の特徴

 $(-D^{2}+a^{2})^{2}u+iaR[V(-D^{2}+a^{2})+V'']u = \lambda(-D^{2}+a^{2})u$

4 階微分方程式
複素固有値問題
2 階微分の項を含む
非自己共役
境界条件: u(-1) = u(1) = u'(-1) = u'(1) = 0
Reynolds 数 *R*: 5000 ~ 6000
丸め誤差の影響

Sunマイクロシステムズ社Forte Fortran http://www.sun.co.jp/workshop/ 4倍精度区間変数

コンパイラ	Forte Fortran Desktop Edition 6 update 1
OS	SunOS 5.7
計算機	FUJITSU GP7000F model 900
	SUN Ultra5 model 360

日本応用数理学会 2003 年度年会 - p.23/24

■ 多倍長計算環境は(比較的)簡単に構築できる

多倍長計算環境は(比較的)簡単に構築できる プログラムの移植は容易(組込み関数の自作がなければ)

多倍長計算環境は(比較的)簡単に構築できる プログラムの移植は容易(組込み関数の自作がなければ) 実験数学の道具として有効?

多倍長計算環境は(比較的)簡単に構築できる プログラムの移植は容易(組込み関数の自作がなければ) 実験数学の道具として有効? 丸め誤差を(できるだけ)取り除いた世界が見える

多倍長計算環境は(比較的)簡単に構築できる プログラムの移植は容易(組込み関数の自作がなければ) 実験数学の道具として有効? 丸め誤差を(できるだけ)取り除いた世界が見える 現状,計算時間がネック